|
| GammaProcessPCABridge (double s0, double mu, double nu, RandomStream stream) |
| Constructs a new GammaProcessPCABridge with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
|
|
double [] | generatePath (double[] uniform01) |
|
double [] | generatePath () |
|
void | setParams (double s0, double mu, double nu) |
|
void | setObservationTimes (double[] t, int d) |
|
BrownianMotionPCA | getBMPCA () |
| Returns the inner BrownianMotionPCA.
|
|
| GammaProcessPCA (double s0, double mu, double nu, RandomStream stream) |
| Constructs a new GammaProcessPCA with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
|
|
| GammaProcessPCA (double s0, double mu, double nu, GammaGen Ggen) |
| Constructs a new GammaProcessPCA with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
|
|
double [] | generatePath () |
|
double [] | generatePath (double[] uniform01) |
|
double | nextObservation () |
| This method is not implemented in this class since the path cannot be generated sequentially.
|
|
double | nextObservation (double nextT) |
| This method is not implemented in this class since the path cannot be generated sequentially.
|
|
BrownianMotionPCA | getBMPCA () |
| Returns the BrownianMotionPCA that is included in the GammaProcessPCA object.
|
|
void | setObservationTimes (double[] t, int d) |
| Sets the observation times of the GammaProcessPCA and the BrownianMotionPCA.
|
|
void | setParams (double s0, double mu, double nu) |
| Sets the parameters s0 , \(\mu\) and \(\nu\) to new values, and sets the variance parameters of the BrownianMotionPCA to \(\nu\).
|
|
void | setStream (RandomStream stream) |
| Resets the umontreal.ssj.rng.RandomStream of the gamma generator and the umontreal.ssj.rng.RandomStream of the inner BrownianMotionPCA to stream .
|
|
| GammaProcess (double s0, double mu, double nu, RandomStream stream) |
| Constructs a new GammaProcess with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
|
|
| GammaProcess (double s0, double mu, double nu, GammaGen Ggen) |
| Constructs a new GammaProcess with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
|
|
double | nextObservation () |
|
double | nextObservation (double nextT) |
| Generates and returns the next observation at time \(t_{j+1} = \mathtt{nextTime}\), using the previous observation time \(t_j\) defined earlier (either by this method or by setObservationTimes ), as well as the value of the previous observation \(X(t_j)\). More...
|
|
double [] | generatePath () |
| Generates, returns and saves the path \(\{X(t_0), X(t_1), …, X(t_d)\}\). More...
|
|
double [] | generatePath (double[] uniform01) |
| Generates, returns and saves the path \( \{X(t_0), X(t_1), …, X(t_d)\}\). More...
|
|
void | setParams (double s0, double mu, double nu) |
| Sets the parameters \(S(t_0) = \mathtt{s0}\), \(\mu= \mathtt{mu}\) and \(\nu= \mathtt{nu}\) of the process. More...
|
|
double | getMu () |
| Returns the value of the parameter \(\mu\).
|
|
double | getNu () |
| Returns the value of the parameter \(\nu\).
|
|
void | setStream (RandomStream stream) |
| Resets the umontreal.ssj.rng.RandomStream of the umontreal.ssj.randvar.GammaGen to stream .
|
|
RandomStream | getStream () |
| Returns the umontreal.ssj.rng.RandomStream stream .
|
|
void | setObservationTimes (double[] T, int d) |
| Sets the observation times of the process to a copy of T , with. More...
|
|
void | setObservationTimes (double delta, int d) |
| Sets equidistant observation times at \(t_j = j\delta\), for. More...
|
|
double [] | getObservationTimes () |
| Returns a reference to the array that contains the observation times. More...
|
|
int | getNumObservationTimes () |
| Returns the number \(d\) of observation times, excluding the time \(t_0\).
|
|
abstract double [] | generatePath () |
| Generates, returns, and saves the sample path \(\{X(t_0), X(t_1), \dots, X(t_d)\}\). More...
|
|
double [] | generatePath (RandomStream stream) |
| Same as generatePath() , but first resets the stream to stream .
|
|
double [] | getPath () |
| Returns a reference to the last generated sample path \(\{X(t_0), ... , X(t_d)\}\). More...
|
|
void | getSubpath (double[] subpath, int[] pathIndices) |
| Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
|
|
double | getObservation (int j) |
| Returns \(X(t_j)\) from the current sample path. More...
|
|
void | resetStartProcess () |
| Resets the observation counter to its initial value \(j=0\), so that the current observation \(X(t_j)\) becomes \(X(t_0)\). More...
|
|
boolean | hasNextObservation () |
| Returns true if \(j<d\), where \(j\) is the number of observations of the current sample path generated since the last call to resetStartProcess. More...
|
|
double | nextObservation () |
| Generates and returns the next observation \(X(t_j)\) of the stochastic process. More...
|
|
int | getCurrentObservationIndex () |
| Returns the value of the index \(j\) corresponding to the time. More...
|
|
double | getCurrentObservation () |
| Returns the value of the last generated observation \(X(t_j)\).
|
|
double | getX0 () |
| Returns the initial value \(X(t_0)\) for this process.
|
|
void | setX0 (double s0) |
| Sets the initial value \(X(t_0)\) for this process to s0 , and reinitializes.
|
|
abstract void | setStream (RandomStream stream) |
| Resets the random stream of the underlying generator to stream .
|
|
abstract RandomStream | getStream () |
| Returns the random stream of the underlying generator.
|
|
int [] | getArrayMappingCounterToIndex () |
| Returns a reference to an array that maps an integer \(k\) to \(i_k\), the index of the observation \(S(t_{i_k})\) corresponding to the \(k\)-th observation to be generated for a sample path of this process. More...
|
|
Same as GammaProcessPCA, but the generated uniforms correspond to a bridge transformation of the BrownianMotionPCA instead of a sequential transformation.