SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Package Attributes | List of all members
GammaProcessPCA Class Reference

Represents a gamma process sampled using the principal component analysis (PCA). More...

Inheritance diagram for GammaProcessPCA:
[legend]
Collaboration diagram for GammaProcessPCA:
[legend]

Public Member Functions

 GammaProcessPCA (double s0, double mu, double nu, RandomStream stream)
 Constructs a new GammaProcessPCA with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
 
 GammaProcessPCA (double s0, double mu, double nu, GammaGen Ggen)
 Constructs a new GammaProcessPCA with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
 
double [] generatePath ()
 
double [] generatePath (double[] uniform01)
 
double nextObservation ()
 This method is not implemented in this class since the path cannot be generated sequentially.
 
double nextObservation (double nextT)
 This method is not implemented in this class since the path cannot be generated sequentially.
 
BrownianMotionPCA getBMPCA ()
 Returns the BrownianMotionPCA that is included in the GammaProcessPCA object.
 
void setObservationTimes (double[] t, int d)
 Sets the observation times of the GammaProcessPCA and the BrownianMotionPCA.
 
void setParams (double s0, double mu, double nu)
 Sets the parameters s0, \(\mu\) and \(\nu\) to new values, and sets the variance parameters of the BrownianMotionPCA to \(\nu\).
 
void setStream (RandomStream stream)
 Resets the umontreal.ssj.rng.RandomStream of the gamma generator and the umontreal.ssj.rng.RandomStream of the inner BrownianMotionPCA to stream.
 
- Public Member Functions inherited from GammaProcess
 GammaProcess (double s0, double mu, double nu, RandomStream stream)
 Constructs a new GammaProcess with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
 
 GammaProcess (double s0, double mu, double nu, GammaGen Ggen)
 Constructs a new GammaProcess with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
 
double nextObservation ()
 
double nextObservation (double nextT)
 Generates and returns the next observation at time \(t_{j+1} = \mathtt{nextTime}\), using the previous observation time \(t_j\) defined earlier (either by this method or by setObservationTimes), as well as the value of the previous observation \(X(t_j)\). More...
 
double [] generatePath ()
 Generates, returns and saves the path \(\{X(t_0), X(t_1), …, X(t_d)\}\). More...
 
double [] generatePath (double[] uniform01)
 Generates, returns and saves the path \( \{X(t_0), X(t_1), …, X(t_d)\}\). More...
 
void setParams (double s0, double mu, double nu)
 Sets the parameters \(S(t_0) = \mathtt{s0}\), \(\mu= \mathtt{mu}\) and \(\nu= \mathtt{nu}\) of the process. More...
 
double getMu ()
 Returns the value of the parameter \(\mu\).
 
double getNu ()
 Returns the value of the parameter \(\nu\).
 
void setStream (RandomStream stream)
 Resets the umontreal.ssj.rng.RandomStream of the umontreal.ssj.randvar.GammaGen to stream.
 
RandomStream getStream ()
 Returns the umontreal.ssj.rng.RandomStream stream.
 
- Public Member Functions inherited from StochasticProcess
void setObservationTimes (double[] T, int d)
 Sets the observation times of the process to a copy of T, with. More...
 
void setObservationTimes (double delta, int d)
 Sets equidistant observation times at \(t_j = j\delta\), for. More...
 
double [] getObservationTimes ()
 Returns a reference to the array that contains the observation times. More...
 
int getNumObservationTimes ()
 Returns the number \(d\) of observation times, excluding the time \(t_0\).
 
abstract double [] generatePath ()
 Generates, returns, and saves the sample path \(\{X(t_0), X(t_1), \dots, X(t_d)\}\). More...
 
double [] generatePath (RandomStream stream)
 Same as generatePath(), but first resets the stream to stream.
 
double [] getPath ()
 Returns a reference to the last generated sample path \(\{X(t_0), ... , X(t_d)\}\). More...
 
void getSubpath (double[] subpath, int[] pathIndices)
 Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
 
double getObservation (int j)
 Returns \(X(t_j)\) from the current sample path. More...
 
void resetStartProcess ()
 Resets the observation counter to its initial value \(j=0\), so that the current observation \(X(t_j)\) becomes \(X(t_0)\). More...
 
boolean hasNextObservation ()
 Returns true if \(j<d\), where \(j\) is the number of observations of the current sample path generated since the last call to resetStartProcess. More...
 
double nextObservation ()
 Generates and returns the next observation \(X(t_j)\) of the stochastic process. More...
 
int getCurrentObservationIndex ()
 Returns the value of the index \(j\) corresponding to the time. More...
 
double getCurrentObservation ()
 Returns the value of the last generated observation \(X(t_j)\).
 
double getX0 ()
 Returns the initial value \(X(t_0)\) for this process.
 
void setX0 (double s0)
 Sets the initial value \(X(t_0)\) for this process to s0, and reinitializes.
 
abstract void setStream (RandomStream stream)
 Resets the random stream of the underlying generator to stream.
 
abstract RandomStream getStream ()
 Returns the random stream of the underlying generator.
 
int [] getArrayMappingCounterToIndex ()
 Returns a reference to an array that maps an integer \(k\) to \(i_k\), the index of the observation \(S(t_{i_k})\) corresponding to the \(k\)-th observation to be generated for a sample path of this process. More...
 

Package Attributes

double [] arrayTime
 
BrownianMotionPCA BMPCA
 
- Package Attributes inherited from GammaProcess
double nu
 
double mu2OverNu
 

Additional Inherited Members

- Protected Member Functions inherited from GammaProcess
void setLarger (double[] path, int left, int mid, int right)
 
double setLarger (double[] path, int left, int right)
 
double setLarger (double v)
 
void init ()
 
- Protected Member Functions inherited from StochasticProcess
void init ()
 
- Protected Attributes inherited from GammaProcess
boolean usesAnti = false
 
RandomStream stream
 
GammaGen Ggen
 
double mu
 
double muOverNu
 
double [] mu2dtOverNu
 
- Protected Attributes inherited from StochasticProcess
boolean observationTimesSet = false
 
double x0 = 0.0
 
int d = -1
 
int observationIndex = 0
 
int observationCounter = 0
 
double [] t
 
double [] path
 
int [] observationIndexFromCounter
 
- Static Protected Attributes inherited from GammaProcess
static final double EPS = 1.0e-15
 

Detailed Description

Represents a gamma process sampled using the principal component analysis (PCA).

To simulate the gamma process at times \(t_0 < t_1 < \cdots< t_d\) by PCA sampling, a Brownian motion \(\{ W(t), t \geq0 \}\) with mean \(0\) and variance parameter \(\nu\) is first generated at times \(t_0 < t_1 < \cdots< t_d\) by PCA sampling (see class BrownianMotionPCA ). The independent increments \(W(t_j) - W(t_{j-1})\) of this process are then transformed into independent \(U(0, 1)\) random variates \(V_j\) via

\[ V_j = \Phi\left(\sqrt{\tau_j-\tau_{j-1}} [W(\tau_j)-W(\tau_{j-1})]\right), \quad j=1,…,s \]

Finally, the increments of the Gamma process are computed as \( Y(t_j) - Y(t_{j-1}) = G^{-1}(V_j)\), where \(G\) is the gamma distribution function.

Constructor & Destructor Documentation

◆ GammaProcessPCA() [1/2]

GammaProcessPCA ( double  s0,
double  mu,
double  nu,
RandomStream  stream 
)

Constructs a new GammaProcessPCA with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\).

The random variables are created using stream. Note that the same umontreal.ssj.rng.RandomStream is used for the GammaProcessPCA and for the BrownianMotionPCA included in this class. Both the GammaProcessPCA and the BrownianMotionPCA are generated by inversion.

◆ GammaProcessPCA() [2/2]

GammaProcessPCA ( double  s0,
double  mu,
double  nu,
GammaGen  Ggen 
)

Constructs a new GammaProcessPCA with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\).

All the random variables, i.e. the gamma ones and the normal ones, are created using the umontreal.ssj.rng.RandomStream included in the umontreal.ssj.randvar.GammaGen Ggen. Note that the parameters of the umontreal.ssj.randvar.GammaGen object are not important since the implementation forces the generator to use the correct parameters (as defined above).


The documentation for this class was generated from the following file: