SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Protected Member Functions | Protected Attributes | Static Protected Attributes | Package Attributes | List of all members
GammaProcess Class Reference

This class represents a gamma process [171]  (page 82) \(\{ S(t) = G(t; \mu, \nu) : t \geq0 \}\) with mean parameter \(\mu\) and variance parameter \(\nu\). More...

Inheritance diagram for GammaProcess:
[legend]
Collaboration diagram for GammaProcess:
[legend]

Public Member Functions

 GammaProcess (double s0, double mu, double nu, RandomStream stream)
 Constructs a new GammaProcess with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
 
 GammaProcess (double s0, double mu, double nu, GammaGen Ggen)
 Constructs a new GammaProcess with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\). More...
 
double nextObservation ()
 
double nextObservation (double nextT)
 Generates and returns the next observation at time \(t_{j+1} = \mathtt{nextTime}\), using the previous observation time \(t_j\) defined earlier (either by this method or by setObservationTimes), as well as the value of the previous observation \(X(t_j)\). More...
 
double [] generatePath ()
 Generates, returns and saves the path \(\{X(t_0), X(t_1), …, X(t_d)\}\). More...
 
double [] generatePath (double[] uniform01)
 Generates, returns and saves the path \( \{X(t_0), X(t_1), …, X(t_d)\}\). More...
 
void setParams (double s0, double mu, double nu)
 Sets the parameters \(S(t_0) = \mathtt{s0}\), \(\mu= \mathtt{mu}\) and \(\nu= \mathtt{nu}\) of the process. More...
 
double getMu ()
 Returns the value of the parameter \(\mu\).
 
double getNu ()
 Returns the value of the parameter \(\nu\).
 
void setStream (RandomStream stream)
 Resets the umontreal.ssj.rng.RandomStream of the umontreal.ssj.randvar.GammaGen to stream.
 
RandomStream getStream ()
 Returns the umontreal.ssj.rng.RandomStream stream.
 
- Public Member Functions inherited from StochasticProcess
void setObservationTimes (double[] T, int d)
 Sets the observation times of the process to a copy of T, with. More...
 
void setObservationTimes (double delta, int d)
 Sets equidistant observation times at \(t_j = j\delta\), for. More...
 
double [] getObservationTimes ()
 Returns a reference to the array that contains the observation times. More...
 
int getNumObservationTimes ()
 Returns the number \(d\) of observation times, excluding the time \(t_0\).
 
abstract double [] generatePath ()
 Generates, returns, and saves the sample path \(\{X(t_0), X(t_1), \dots, X(t_d)\}\). More...
 
double [] generatePath (RandomStream stream)
 Same as generatePath(), but first resets the stream to stream.
 
double [] getPath ()
 Returns a reference to the last generated sample path \(\{X(t_0), ... , X(t_d)\}\). More...
 
void getSubpath (double[] subpath, int[] pathIndices)
 Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
 
double getObservation (int j)
 Returns \(X(t_j)\) from the current sample path. More...
 
void resetStartProcess ()
 Resets the observation counter to its initial value \(j=0\), so that the current observation \(X(t_j)\) becomes \(X(t_0)\). More...
 
boolean hasNextObservation ()
 Returns true if \(j<d\), where \(j\) is the number of observations of the current sample path generated since the last call to resetStartProcess. More...
 
double nextObservation ()
 Generates and returns the next observation \(X(t_j)\) of the stochastic process. More...
 
int getCurrentObservationIndex ()
 Returns the value of the index \(j\) corresponding to the time. More...
 
double getCurrentObservation ()
 Returns the value of the last generated observation \(X(t_j)\).
 
double getX0 ()
 Returns the initial value \(X(t_0)\) for this process.
 
void setX0 (double s0)
 Sets the initial value \(X(t_0)\) for this process to s0, and reinitializes.
 
abstract void setStream (RandomStream stream)
 Resets the random stream of the underlying generator to stream.
 
abstract RandomStream getStream ()
 Returns the random stream of the underlying generator.
 
int [] getArrayMappingCounterToIndex ()
 Returns a reference to an array that maps an integer \(k\) to \(i_k\), the index of the observation \(S(t_{i_k})\) corresponding to the \(k\)-th observation to be generated for a sample path of this process. More...
 

Protected Member Functions

void setLarger (double[] path, int left, int mid, int right)
 
double setLarger (double[] path, int left, int right)
 
double setLarger (double v)
 
void init ()
 
- Protected Member Functions inherited from StochasticProcess
void init ()
 

Protected Attributes

boolean usesAnti = false
 
RandomStream stream
 
GammaGen Ggen
 
double mu
 
double muOverNu
 
double [] mu2dtOverNu
 
- Protected Attributes inherited from StochasticProcess
boolean observationTimesSet = false
 
double x0 = 0.0
 
int d = -1
 
int observationIndex = 0
 
int observationCounter = 0
 
double [] t
 
double [] path
 
int [] observationIndexFromCounter
 

Static Protected Attributes

static final double EPS = 1.0e-15
 

Package Attributes

double nu
 
double mu2OverNu
 

Detailed Description

This class represents a gamma process [171]  (page 82) \(\{ S(t) = G(t; \mu, \nu) : t \geq0 \}\) with mean parameter \(\mu\) and variance parameter \(\nu\).

It is a continuous-time process with stationary, independent gamma increments such that for any \(\Delta t > 0\),

\[ S(t + \Delta t) = S(t) + X,\tag{GammaEqn} \]

where \(X\) is a random variate from the gamma distribution Gamma \((\mu^2\Delta t / \nu, \mu/ \nu)\).

In this class, the gamma process is sampled sequentially using equation ( GammaEqn ).

Constructor & Destructor Documentation

◆ GammaProcess() [1/2]

GammaProcess ( double  s0,
double  mu,
double  nu,
RandomStream  stream 
)

Constructs a new GammaProcess with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\).

The gamma variates \(X\) in ( GammaEqn ) are generated by inversion using stream.

◆ GammaProcess() [2/2]

GammaProcess ( double  s0,
double  mu,
double  nu,
GammaGen  Ggen 
)

Constructs a new GammaProcess with parameters \(\mu= \mathtt{mu}\), \(\nu= \mathtt{nu}\) and initial value \(S(t_0) = \mathtt{s0}\).

The gamma variates \(X\) in ( GammaEqn ) are supplied by the gamma random variate generator Ggen. Note that the parameters of the umontreal.ssj.randvar.GammaGen object Ggen are not important since the implementation forces the generator to use the correct parameters (as defined above).

Member Function Documentation

◆ generatePath() [1/2]

double [] generatePath ( )

Generates, returns and saves the path \(\{X(t_0), X(t_1), …, X(t_d)\}\).

The gamma variates \(X\) in ( GammaEqn ) are generated using the umontreal.ssj.rng.RandomStream stream or the umontreal.ssj.rng.RandomStream included in the umontreal.ssj.randvar.GammaGen Ggen.

◆ generatePath() [2/2]

double [] generatePath ( double []  uniform01)

Generates, returns and saves the path \( \{X(t_0), X(t_1), …, X(t_d)\}\).

This method does not use the umontreal.ssj.rng.RandomStream stream nor the umontreal.ssj.randvar.GammaGen Ggen. It uses the vector of uniform random numbers \(U(0, 1)\) provided by the user and generates the path by inversion. The vector uniform01 must be of dimension \(d\).

◆ nextObservation()

double nextObservation ( double  nextT)

Generates and returns the next observation at time \(t_{j+1} = \mathtt{nextTime}\), using the previous observation time \(t_j\) defined earlier (either by this method or by setObservationTimes), as well as the value of the previous observation \(X(t_j)\).

Warning: This method will reset the observations time \(t_{j+1}\) for this process to nextT. The user must make sure that the \(t_{j+1}\) supplied is \(\geq t_j\).

◆ setParams()

void setParams ( double  s0,
double  mu,
double  nu 
)

Sets the parameters \(S(t_0) = \mathtt{s0}\), \(\mu= \mathtt{mu}\) and \(\nu= \mathtt{nu}\) of the process.

Warning: This method will recompute some quantities stored internally, which may be slow if called repeatedly.


The documentation for this class was generated from the following file: