SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | List of all members
LognormalDistFromMoments Class Reference

Extends the LognormalDist class with a constructor accepting the mean \(m\) and the variance \(v\) of the distribution as arguments. More...

Inheritance diagram for LognormalDistFromMoments:
[legend]
Collaboration diagram for LognormalDistFromMoments:
[legend]

Public Member Functions

 LognormalDistFromMoments (double mean, double var)
 
- Public Member Functions inherited from LognormalDist
 LognormalDist ()
 Constructs a LognormalDist object with default parameters \(\mu= 0\) and \(\sigma= 1\).
 
 LognormalDist (double mu, double sigma)
 Constructs a LognormalDist object with parameters \(\mu\) = mu and \(\sigma\) = sigma.
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
double getMu ()
 Returns the parameter \(\mu\) of this object.
 
double getSigma ()
 Returns the parameter \(\sigma\) of this object.
 
void setParams (double mu, double sigma)
 Sets the parameters \(\mu\) and \(\sigma\) of this object.
 
double [] getParams ()
 Returns a table containing the parameters of the current distribution, in the order: [ \(\mu\), \(\sigma\)].
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Additional Inherited Members

- Static Public Member Functions inherited from LognormalDist
static double density (double mu, double sigma, double x)
 Computes the lognormal density function \(f(x)\) in ( flognormal ).
 
static double cdf (double mu, double sigma, double x)
 Computes the lognormal distribution function, using NormalDist.cdf01.
 
static double barF (double mu, double sigma, double x)
 Computes the lognormal complementary distribution function \(\bar{F}(x)\), using NormalDist.barF01.
 
static double inverseF (double mu, double sigma, double u)
 Computes the inverse of the lognormal distribution function, using NormalDist.inverseF01.
 
static double [] getMLE (double[] x, int n)
 Estimates the parameters \((\mu, \sigma)\) of the lognormal distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
 
static LognormalDist getInstanceFromMLE (double[] x, int n)
 Creates a new instance of a lognormal distribution with parameters \(\mu\) and \(\sigma\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
 
static double getMean (double mu, double sigma)
 Computes and returns the mean \(E[X] = e^{\mu+ \sigma^2/2}\) of the lognormal distribution with parameters \(\mu\) and \(\sigma\). More...
 
static double getVariance (double mu, double sigma)
 Computes and returns the variance \(\mbox{Var}[X] = e^{2\mu+ \sigma^2}(e^{\sigma^2} - 1)\) of the lognormal distribution with parameters \(\mu\) and \(\sigma\). More...
 
static double getStandardDeviation (double mu, double sigma)
 Computes and returns the standard deviation of the lognormal distribution with parameters \(\mu\) and \(\sigma\). More...
 
- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Extends the LognormalDist class with a constructor accepting the mean \(m\) and the variance \(v\) of the distribution as arguments.

The mean and variance of a lognormal random variable with parameters \(\mu\) and \(\sigma\) are \(e^{\mu+\sigma^2/2}\) and \(e^{2\mu+ \sigma^2}(e^{\sigma^2} - 1)\) respectively, so the parameters are given by \(\sigma=\sqrt{\ln(v/m^2+1)}\) and \(\mu=\ln(m) - \sigma^2/2\).


The documentation for this class was generated from the following file: