SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Static Public Member Functions | Protected Attributes | Static Protected Attributes | List of all members
NormalDist Class Reference

Extends the class ContinuousDistribution for the normal distribution (e.g., [99]  (page 80)). More...

Inheritance diagram for NormalDist:
[legend]
Collaboration diagram for NormalDist:
[legend]

Public Member Functions

 NormalDist ()
 Constructs a NormalDist object with default parameters \(\mu= 0\) and \(\sigma= 1\).
 
 NormalDist (double mu, double sigma)
 Constructs a NormalDist object with mean \(\mu\) = mu and standard deviation \(\sigma\) = sigma.
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
double getMu ()
 Returns the parameter \(\mu\).
 
double getSigma ()
 Returns the parameter \(\sigma\).
 
void setParams (double mu, double sigma)
 Sets the parameters \(\mu\) and \(\sigma\) of this object.
 
double [] getParams ()
 Return a table containing the parameters of the current distribution. More...
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density01 (double x)
 Same as density(0, 1, x).
 
static double density (double mu, double sigma, double x)
 Computes the normal density function ( fnormal ).
 
static double cdf01 (double x)
 Same as cdf(0, 1, x).
 
static double cdf (double mu, double sigma, double x)
 Computes the normal distribution function with mean \(\mu\) and variance \(\sigma^2\). More...
 
static double barF01 (double x)
 Same as barF(0, 1, x).
 
static double barF (double mu, double sigma, double x)
 Computes the complementary normal distribution function \(\bar{F}(x) = 1 - \Phi((x-\mu)/\sigma)\), with mean \(\mu\) and variance \(\sigma^2\). More...
 
static double inverseF01 (double u)
 Same as inverseF(0, 1, u).
 
static double inverseF (double mu, double sigma, double u)
 Computes the inverse normal distribution function with mean \(\mu\) and variance \(\sigma^2\). More...
 
static double [] getMLE (double[] x, int n)
 Estimates the parameters \((\mu, \sigma)\) of the normal distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
 
static NormalDist getInstanceFromMLE (double[] x, int n)
 Creates a new instance of a normal distribution with parameters \(\mu\) and \(\sigma\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
 
static double getMean (double mu, double sigma)
 Computes and returns the mean \(E[X] = \mu\) of the normal distribution with parameters \(\mu\) and \(\sigma\). More...
 
static double getVariance (double mu, double sigma)
 Computes and returns the variance \(\mbox{Var}[X] = \sigma^2\) of the normal distribution with parameters \(\mu\) and \(\sigma\). More...
 
static double getStandardDeviation (double mu, double sigma)
 Computes and returns the standard deviation \(\sigma\) of the normal distribution with parameters \(\mu\) and \(\sigma\). More...
 

Protected Attributes

double mu
 
double sigma
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 

Static Protected Attributes

static final double RAC2PI = 2.50662827463100050
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 

Detailed Description

Extends the class ContinuousDistribution for the normal distribution (e.g., [99]  (page 80)).

It has mean \(\mu\) and variance \(\sigma^2\). Its density function is

\[ f (x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)} \qquad\mbox{for } -\infty< x < \infty, \tag{fnormal} \]

where \(\sigma> 0\). When \(\mu=0\) and \(\sigma=1\), we have the standard normal distribution, with corresponding distribution function

\[ F(x) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt \qquad\mbox{for } -\infty< x < \infty. \tag{cdfnormal} \]

The non-static methods cdf, barF, and inverseF are implemented via cdf01, barF01, and inverseF01, respectively.

Member Function Documentation

◆ barF() [1/2]

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ barF() [2/2]

static double barF ( double  mu,
double  sigma,
double  x 
)
static

Computes the complementary normal distribution function \(\bar{F}(x) = 1 - \Phi((x-\mu)/\sigma)\), with mean \(\mu\) and variance \(\sigma^2\).

Uses a Chebyshev series giving 16 decimal digits of precision [212] .

◆ cdf() [1/2]

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ cdf() [2/2]

static double cdf ( double  mu,
double  sigma,
double  x 
)
static

Computes the normal distribution function with mean \(\mu\) and variance \(\sigma^2\).

Uses the Chebyshev approximation proposed in [212] , which gives 16 decimals of precision.

◆ getInstanceFromMLE()

static NormalDist getInstanceFromMLE ( double []  x,
int  n 
)
static

Creates a new instance of a normal distribution with parameters \(\mu\) and \(\sigma\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).

Parameters
xthe list of observations to use to evaluate parameters
nthe number of observations to use to evaluate parameters

◆ getMean()

static double getMean ( double  mu,
double  sigma 
)
static

Computes and returns the mean \(E[X] = \mu\) of the normal distribution with parameters \(\mu\) and \(\sigma\).

Returns
the mean of the normal distribution \(E[X] = \mu\)

◆ getMLE()

static double [] getMLE ( double []  x,
int  n 
)
static

Estimates the parameters \((\mu, \sigma)\) of the normal distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).

The estimates are returned in a two-element array, in regular order: [ \(\hat{\mu}\), \(\hat{\sigma}\)]. The maximum likelihood estimators are the values \((\hat{\mu}, \hat{\sigma})\) that satisfy the equations:

\begin{align*} \hat{\mu} & = \bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i \\ \hat{\sigma} & = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2}. \end{align*}

See [99]  (page 123).

Parameters
xthe list of observations used to evaluate parameters
nthe number of observations used to evaluate parameters
Returns
returns the parameters [ \(\hat{\mu}\), \(\hat{\sigma}\)]

◆ getParams()

double [] getParams ( )

Return a table containing the parameters of the current distribution.

This table is put in regular order: [ \(\mu\), \(\sigma\)].

Implements Distribution.

◆ getStandardDeviation()

static double getStandardDeviation ( double  mu,
double  sigma 
)
static

Computes and returns the standard deviation \(\sigma\) of the normal distribution with parameters \(\mu\) and \(\sigma\).

Returns
the standard deviation of the normal distribution

◆ getVariance()

static double getVariance ( double  mu,
double  sigma 
)
static

Computes and returns the variance \(\mbox{Var}[X] = \sigma^2\) of the normal distribution with parameters \(\mu\) and \(\sigma\).

Returns
the variance of the normal distribution \(\mbox{Var}[X] = \sigma^2\)

◆ inverseF() [1/2]

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.

◆ inverseF() [2/2]

static double inverseF ( double  mu,
double  sigma,
double  u 
)
static

Computes the inverse normal distribution function with mean \(\mu\) and variance \(\sigma^2\).

Uses different rational Chebyshev approximations [21] . Returns 16 decimal digits of precision for \(2.2\times10^{-308} < u < 1\).


The documentation for this class was generated from the following file: