SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class ContinuousDistribution for the Johnson \(S_U\) distribution (see [118] (page 316)). More...
Public Member Functions | |
JohnsonSUDist (double gamma, double delta) | |
Same as JohnsonSUDist(gamma, delta, 0, 1). | |
JohnsonSUDist (double gamma, double delta, double xi, double lambda) | |
Constructs a JohnsonSUDist object with shape parameters \(\gamma\) and \(\delta\), location parameter \(\xi\), and scale parameter \(\lambda\). | |
double | density (double x) |
double | cdf (double x) |
Returns the distribution function \(F(x)\). More... | |
double | barF (double x) |
Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
void | setParams (double gamma, double delta, double xi, double lambda) |
Sets the value of the parameters \(\gamma\), \(\delta\), \(\xi\) and \(\lambda\) for this object. | |
Public Member Functions inherited from JohnsonSystem | |
double | getGamma () |
Returns the value of \(\gamma\). | |
double | getDelta () |
Returns the value of \(\delta\). | |
double | getXi () |
Returns the value of \(\xi\). | |
double | getLambda () |
Returns the value of \(\lambda\). | |
double [] | getParams () |
Return an array containing the parameters of the current distribution. More... | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
abstract double | density (double x) |
Returns \(f(x)\), the density evaluated at \(x\). More... | |
double | barF (double x) |
Returns the complementary distribution function. More... | |
double | inverseBrent (double a, double b, double u, double tol) |
Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
double | inverseBisection (double u) |
Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
double | getMean () |
Returns the mean. More... | |
double | getVariance () |
Returns the variance. More... | |
double | getStandardDeviation () |
Returns the standard deviation. More... | |
double | getXinf () |
Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
double | getXsup () |
Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXinf (double xa) |
Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXsup (double xb) |
Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
static double | density (double gamma, double delta, double xi, double lambda, double x) |
Returns the density function \(f(x)\). | |
static double | cdf (double gamma, double delta, double xi, double lambda, double x) |
Returns the distribution function \(F(x)\). | |
static double | barF (double gamma, double delta, double xi, double lambda, double x) |
Returns the complementary distribution function \(1-F(x)\). | |
static double | inverseF (double gamma, double delta, double xi, double lambda, double u) |
Returns the inverse distribution function \(F^{-1}(u)\). | |
static double | getMean (double gamma, double delta, double xi, double lambda) |
Returns the mean \[ E[X] = \xi- \lambda e^{1/(2\delta^2)} \sinh({\gamma}/{\delta}) \] of the Johnson \(S_U\) distribution with parameters \(\gamma\), \(\delta\), \(\xi\) and \(\lambda\). More... | |
static double | getVariance (double gamma, double delta, double xi, double lambda) |
Returns the variance \[ \mbox{Var}[X] = \frac{\lambda^2}{2} \left(e^{1/\delta^2} - 1\right)\left(e^{1/\delta^2} \cosh(2 {\gamma}/{\delta}) + 1\right) \] of the Johnson \(S_U\) distribution with parameters \(\gamma\), \(\delta\), \(\xi\) and \(\lambda\). More... | |
static double | getStandardDeviation (double gamma, double delta, double xi, double lambda) |
Returns the standard deviation of the Johnson \(S_U\) distribution with parameters \(\gamma\), \(\delta\), \(\xi\), \(\lambda\). More... | |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
int | decPrec = 15 |
Protected Member Functions inherited from JohnsonSystem | |
JohnsonSystem (double gamma, double delta, double xi, double lambda) | |
Constructs a JohnsonSystem object with shape parameters \(\gamma= \mathtt{gamma}\) and \(\delta= \mathtt{delta}\), location parameter \(\xi= \mathtt{xi}\), and scale parameter \(\lambda= \mathtt{lambda}\). | |
void | setParams0 (double gamma, double delta, double xi, double lambda) |
Sets the value of the parameters \(\gamma\), \(\delta\), \(\xi\) and \(\lambda\). | |
Protected Attributes inherited from JohnsonSystem | |
double | gamma |
double | delta |
double | xi |
double | lambda |
Protected Attributes inherited from ContinuousDistribution | |
double | supportA = Double.NEGATIVE_INFINITY |
double | supportB = Double.POSITIVE_INFINITY |
Static Protected Attributes inherited from ContinuousDistribution | |
static final double | XBIG = 100.0 |
static final double | XBIGM = 1000.0 |
static final double [] | EPSARRAY |
Extends the class ContinuousDistribution for the Johnson \(S_U\) distribution (see [118] (page 316)).
It has shape parameters \(\gamma\) and \(\delta> 0\), location parameter \(\xi\), and scale parameter \(\lambda> 0\). Denoting \(t=(x-\xi)/\lambda\) and \(z = \gamma+ \delta\ln\left(t + \sqrt{t^2 + 1}\right)\), the distribution has density
\[ f(x) = \frac{\delta e^{-z^2/2}}{\lambda\sqrt{2\pi(t^2 + 1)}}, \qquad\mbox{for } -\infty< x < \infty, \]
and distribution function
\[ F(x) = \Phi(z), \qquad\mbox{for } -\infty< x < \infty, \]
where \(\Phi\) is the standard normal distribution function. The inverse distribution function is
\[ F^{-1} (u) = \xi+ \lambda\sinh(v(u)), \qquad\mbox{for } 0 \le u \le1, \]
where
\[ v(u) = [\Phi^{-1}(u) - \gamma]/\delta. \]
This class relies on the methods NormalDist.cdf01 and NormalDist.inverseF01 of NormalDist to approximate \(\Phi\) and \(\Phi^{-1}\).
double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
x | value at which the complementary distribution function is evaluated |
x
Implements Distribution.
double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
x | value at which the distribution function is evaluated |
x
Implements Distribution.
|
static |
Returns the mean
\[ E[X] = \xi- \lambda e^{1/(2\delta^2)} \sinh({\gamma}/{\delta}) \]
of the Johnson \(S_U\) distribution with parameters \(\gamma\), \(\delta\), \(\xi\) and \(\lambda\).
|
static |
Returns the standard deviation of the Johnson \(S_U\) distribution with parameters \(\gamma\), \(\delta\), \(\xi\), \(\lambda\).
|
static |
Returns the variance
\[ \mbox{Var}[X] = \frac{\lambda^2}{2} \left(e^{1/\delta^2} - 1\right)\left(e^{1/\delta^2} \cosh(2 {\gamma}/{\delta}) + 1\right) \]
of the Johnson \(S_U\) distribution with parameters \(\gamma\), \(\delta\), \(\xi\) and \(\lambda\).
double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u
Implements Distribution.