SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Static Public Member Functions | List of all members
HypoExponentialDistEqual Class Reference

This class implements the hypoexponential distribution for the case of equidistant \(\lambda_i = (n+1-i)h\). More...

Inheritance diagram for HypoExponentialDistEqual:
[legend]
Collaboration diagram for HypoExponentialDistEqual:
[legend]

Public Member Functions

 HypoExponentialDistEqual (int n, int k, double h)
 Constructor for equidistant rates. More...
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double [] getParams ()
 Returns the three parameters of this hypoexponential distribution as array \((n, k, h)\). More...
 
void setParams (int n, int k, double h)
 
String toString ()
 
- Public Member Functions inherited from HypoExponentialDist
 HypoExponentialDist (double[] lambda)
 Constructs a HypoExponentialDist object, with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
double [] getLambda ()
 Returns the values \(\lambda_i\) for this object.
 
void setLambda (double[] lambda)
 Sets the values \(\lambda_i = \)lambda[ \(i-1\)], \(i = 1,…,k\) for this object.
 
double [] getParams ()
 Same as getLambda.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (int n, int k, double h, double x)
 Computes the density function \(f(x)\), with the same arguments as in the constructor. More...
 
static double cdf (int n, int k, double h, double x)
 Computes the distribution function \(F(x)\), with arguments as in the constructor. More...
 
static double barF (int n, int k, double h, double x)
 Computes the complementary distribution \(\bar{F}(x)\), as in formula ( conv-hypo-equal ). More...
 
static double inverseF (int n, int k, double h, double u)
 Computes the inverse distribution \(x=F^{-1}(u)\), with arguments as in the constructor. More...
 
- Static Public Member Functions inherited from HypoExponentialDist
static double density (double[] lambda, double x)
 Computes the density function \(f(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double cdf (double[] lambda, double x)
 Computes the distribution function \(F(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double cdf2 (double[] lambda, double x)
 Computes the distribution function \(F(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double barF (double[] lambda, double x)
 Computes the complementary distribution \(\bar{F}(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double inverseF (double[] lambda, double u)
 Computes the inverse distribution function \(F^{-1}(u)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double getMean (double[] lambda)
 Returns the mean, \(E[X] = \sum_{i=1}^k 1/\lambda_i\), of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double getVariance (double[] lambda)
 Returns the variance, \(\mbox{Var}[X] = \sum_{i=1}^k 1/\lambda_i^2\), of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double getStandardDeviation (double[] lambda)
 Returns the standard deviation of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Static Protected Member Functions inherited from HypoExponentialDist
static void testLambda (double[] lambda)
 
- Protected Attributes inherited from HypoExponentialDist
double [] m_lambda
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

This class implements the hypoexponential distribution for the case of equidistant \(\lambda_i = (n+1-i)h\).

We have \(\lambda_{i+1} - \lambda_i = h\), with \(h\) a constant, and \(n \ge k\) are integers.

The formula ( convolution-hypo ) becomes

\[ \bar{F}(x) = \mathbb P\left[X_1 + \cdots+ X_k > x \right] = \sum_{i=1}^k e^{-(n+1-i)h x} \prod_{\substack {j=1\\j\not i}}^k \frac{n+1-j}{i - j}. \tag{conv-hypo-equal} \]

The formula ( fhypoexp2 ) for the density becomes

\[ f(x) = \sum_{i=1}^k (n+1-i)h e^{-(n+1-i)h x} \prod_{\substack {j=1\\j\not i}}^k \frac{n+1-j}{i - j}. \tag{fhypoexp3} \]

Constructor & Destructor Documentation

◆ HypoExponentialDistEqual()

HypoExponentialDistEqual ( int  n,
int  k,
double  h 
)

Constructor for equidistant rates.

The rates are \(\lambda_i = (n+1-i)h\), for \(i = 1,…,k\).

Parameters
nlargest rate is \(nh\)
knumber of rates
hdifference between adjacent rates

Member Function Documentation

◆ barF() [1/2]

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ barF() [2/2]

static double barF ( int  n,
int  k,
double  h,
double  x 
)
static

Computes the complementary distribution \(\bar{F}(x)\), as in formula ( conv-hypo-equal ).

Parameters
nmax possible number of \(\lambda_i\)
keffective number of \(\lambda_i\)
hstep between two successive \(\lambda_i\)
xvalue at which the complementary distribution is evaluated
Returns
value of complementary distribution at \(x\)

◆ cdf() [1/2]

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ cdf() [2/2]

static double cdf ( int  n,
int  k,
double  h,
double  x 
)
static

Computes the distribution function \(F(x)\), with arguments as in the constructor.

Parameters
nmax possible number of \(\lambda_i\)
keffective number of \(\lambda_i\)
hstep between two successive \(\lambda_i\)
xvalue at which the distribution is evaluated
Returns
value of distribution at \(x\)

◆ density()

static double density ( int  n,
int  k,
double  h,
double  x 
)
static

Computes the density function \(f(x)\), with the same arguments as in the constructor.

Parameters
nmax possible number of \(\lambda_i\)
keffective number of \(\lambda_i\)
hstep between two successive \(\lambda_i\)
xvalue at which the distribution is evaluated
Returns
density at \(x\)

◆ getParams()

double [] getParams ( )

Returns the three parameters of this hypoexponential distribution as array \((n, k, h)\).

Returns
parameters of the hypoexponential distribution

Implements Distribution.

◆ inverseF() [1/2]

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.

◆ inverseF() [2/2]

static double inverseF ( int  n,
int  k,
double  h,
double  u 
)
static

Computes the inverse distribution \(x=F^{-1}(u)\), with arguments as in the constructor.

Parameters
nmax possible number of \(\lambda_i\)
keffective number of \(\lambda_i\)
hstep between two successive \(\lambda_i\)
uvalue at which the inverse distribution is evaluated
Returns
inverse distribution at \(u\)

The documentation for this class was generated from the following file: