SSJ  3.3.1
Stochastic Simulation in Java
Classes | Public Member Functions | Static Public Member Functions | Static Protected Member Functions | Protected Attributes | List of all members
HypoExponentialDist Class Reference

This class implements the hypoexponential distribution, also called the generalized Erlang distribution. More...

Inheritance diagram for HypoExponentialDist:
[legend]
Collaboration diagram for HypoExponentialDist:
[legend]

Public Member Functions

 HypoExponentialDist (double[] lambda)
 Constructs a HypoExponentialDist object, with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
double [] getLambda ()
 Returns the values \(\lambda_i\) for this object.
 
void setLambda (double[] lambda)
 Sets the values \(\lambda_i = \)lambda[ \(i-1\)], \(i = 1,…,k\) for this object.
 
double [] getParams ()
 Same as getLambda.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (double[] lambda, double x)
 Computes the density function \(f(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double cdf (double[] lambda, double x)
 Computes the distribution function \(F(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double cdf2 (double[] lambda, double x)
 Computes the distribution function \(F(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double barF (double[] lambda, double x)
 Computes the complementary distribution \(\bar{F}(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double inverseF (double[] lambda, double u)
 Computes the inverse distribution function \(F^{-1}(u)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double getMean (double[] lambda)
 Returns the mean, \(E[X] = \sum_{i=1}^k 1/\lambda_i\), of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double getVariance (double[] lambda)
 Returns the variance, \(\mbox{Var}[X] = \sum_{i=1}^k 1/\lambda_i^2\), of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 
static double getStandardDeviation (double[] lambda)
 Returns the standard deviation of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\). More...
 

Static Protected Member Functions

static void testLambda (double[] lambda)
 

Protected Attributes

double [] m_lambda
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

This class implements the hypoexponential distribution, also called the generalized Erlang distribution.

Let the \(X_j\), \(j=1,…,k\), be \(k\) independent exponential random variables with different rates \(\lambda_j\), i.e. assume that \(\lambda_j \neq\lambda_i\) for \(i \neq j\). Then the sum \(\sum_{j=1}^kX_j\) is called a hypoexponential random variable.

Let the \(k\times k\) upper triangular bidiagonal matrix

\[ \tag{tail-hypomatrix} \mathbf{A}= \begin{pmatrix} -\lambda_1 & \lambda_1 & 0 & … & 0 \\ 0 & -\lambda_2 & \lambda_2 & … & 0 \\ \vdots & \vdots & \ddots &   \ddots & \vdots \\ 0 & … & 0 & -\lambda_{k-1} & \lambda_{k-1} \\ 0 & … & 0 & 0 & -\lambda_k \end{pmatrix} \]

with \(\lambda_j\) the rates of the \(k\) exponential random variables; then the cumulative complementary probability of the hypoexponential distribution is given by [184], [116]

\[ \tag{tail-hypoexp} \bar{F}(x) = \mathbb P \left[X_1 + \cdots+ X_k > x \right] = \sum_{j=1}^k \left(e^{\mathbf{A}x}\right)_{1j}, \]

i.e., it is the sum of the elements of the first row of matrix \(e^{\mathbf{A}x}\). The density of the hypoexponential distribution is

\[ f(x) = \left(-e^{\mathbf{A}x}\mathbf{A}\right)_{1k} = \lambda_k \left(e^{\mathbf{A}x}\right)_{1k}, \tag{fhypoexp} \]

i.e., it is element \((1,k)\) of matrix \(-e^{\mathbf{A}x}\mathbf{A}\). The distribution function is as usual \(F(x) = 1 - \bar{F}(x)\).

See the class HypoExponentialDistQuick for alternative formulae for the probabilities.

Constructor & Destructor Documentation

◆ HypoExponentialDist()

HypoExponentialDist ( double []  lambda)

Constructs a HypoExponentialDist object, with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Parameters
lambdarates of the hypoexponential distribution

Member Function Documentation

◆ barF() [1/2]

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ barF() [2/2]

static double barF ( double []  lambda,
double  x 
)
static

Computes the complementary distribution \(\bar{F}(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Parameters
lambdarates of the hypoexponential distribution
xvalue at which the complementary distribution is evaluated
Returns
complementary distribution at \(x\)

◆ cdf() [1/2]

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ cdf() [2/2]

static double cdf ( double []  lambda,
double  x 
)
static

Computes the distribution function \(F(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Parameters
lambdarates of the hypoexponential distribution
xvalue at which the distribution is evaluated
Returns
distribution at \(x\)

◆ cdf2()

static double cdf2 ( double []  lambda,
double  x 
)
static

Computes the distribution function \(F(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Returns \(1 - \)barF(lambda, x), which is much faster than cdf but loses precision in the lower tail.

Parameters
lambdarates of the hypoexponential distribution
xvalue at which the distribution is evaluated
Returns
distribution at \(x\)

◆ density()

static double density ( double []  lambda,
double  x 
)
static

Computes the density function \(f(x)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Parameters
lambdarates of the hypoexponential distribution
xvalue at which the density is evaluated
Returns
density at \(x\)

◆ getMean()

static double getMean ( double []  lambda)
static

Returns the mean, \(E[X] = \sum_{i=1}^k 1/\lambda_i\), of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Parameters
lambdarates of the hypoexponential distribution
Returns
mean of the hypoexponential distribution

◆ getStandardDeviation()

static double getStandardDeviation ( double []  lambda)
static

Returns the standard deviation of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Parameters
lambdarates of the hypoexponential distribution
Returns
standard deviation of the hypoexponential distribution

◆ getVariance()

static double getVariance ( double []  lambda)
static

Returns the variance, \(\mbox{Var}[X] = \sum_{i=1}^k 1/\lambda_i^2\), of the hypoexponential distribution with rates \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Parameters
lambdarates of the hypoexponential distribution
Returns
variance of the hypoexponential distribution

◆ inverseF() [1/2]

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.

◆ inverseF() [2/2]

static double inverseF ( double []  lambda,
double  u 
)
static

Computes the inverse distribution function \(F^{-1}(u)\), with \(\lambda_i = \) lambda[ \(i-1\)], \(i = 1,…,k\).

Parameters
lambdarates of the hypoexponential distribution
uvalue at which the inverse distribution is evaluated
Returns
inverse distribution at \(u\)

The documentation for this class was generated from the following file: