SSJ
3.3.1
Stochastic Simulation in Java
|
This class has been replaced by GumbelDist . More...
Public Member Functions | |
ExtremeValueDist () | |
THIS CLASS HAS BEEN REPLACED BY GumbelDist . More... | |
ExtremeValueDist (double alpha, double lambda) | |
THIS CLASS HAS BEEN REPLACED BY GumbelDist . More... | |
double | density (double x) |
double | cdf (double x) |
Returns the distribution function \(F(x)\). More... | |
double | barF (double x) |
Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
double | getAlpha () |
Returns the parameter \(\alpha\) of this object. | |
double | getLambda () |
Returns the parameter \(\lambda\) of this object. | |
void | setParams (double alpha, double lambda) |
Sets the parameters \(\alpha\) and \(\lambda\) of this object. | |
double [] | getParams () |
Return a table containing the parameters of the current distribution. More... | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
abstract double | density (double x) |
Returns \(f(x)\), the density evaluated at \(x\). More... | |
double | barF (double x) |
Returns the complementary distribution function. More... | |
double | inverseBrent (double a, double b, double u, double tol) |
Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
double | inverseBisection (double u) |
Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
double | getMean () |
Returns the mean. More... | |
double | getVariance () |
Returns the variance. More... | |
double | getStandardDeviation () |
Returns the standard deviation. More... | |
double | getXinf () |
Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
double | getXsup () |
Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXinf (double xa) |
Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXsup (double xb) |
Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
static double | density (double alpha, double lambda, double x) |
Computes the density function. | |
static double | cdf (double alpha, double lambda, double x) |
THIS CLASS HAS BEEN REPLACED BY GumbelDist . More... | |
static double | barF (double alpha, double lambda, double x) |
Computes the complementary distribution function. | |
static double | inverseF (double alpha, double lambda, double u) |
Computes the inverse distribution function. | |
static double [] | getMLE (double[] x, int n) |
Estimates the parameters \((\alpha,\lambda)\) of the extreme value distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More... | |
static double [] | getMaximumLikelihoodEstimate (double[] x, int n) |
Same as getMLE. | |
static ExtremeValueDist | getInstanceFromMLE (double[] x, int n) |
Creates a new instance of an extreme value distribution with parameters \(\alpha\) and \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static double | getMean (double alpha, double lambda) |
Computes and returns the mean, \(E[X] = \alpha+ \gamma/\lambda\), of the extreme value distribution with parameters \(\alpha\) and \(\lambda\), where \(\gamma= 0.5772156649\) is the Euler-Mascheroni constant. More... | |
static double | getVariance (double alpha, double lambda) |
Computes and returns the variance, \(\mbox{Var}[X] = \pi^2/(6\lambda^2)\), of the extreme value distribution with parameters \(\alpha\) and \(\lambda\). More... | |
static double | getStandardDeviation (double alpha, double lambda) |
Computes and returns the standard deviation of the extreme value distribution with parameters \(\alpha\) and \(\lambda\). More... | |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
int | decPrec = 15 |
Protected Attributes inherited from ContinuousDistribution | |
double | supportA = Double.NEGATIVE_INFINITY |
double | supportB = Double.POSITIVE_INFINITY |
Static Protected Attributes inherited from ContinuousDistribution | |
static final double | XBIG = 100.0 |
static final double | XBIGM = 1000.0 |
static final double [] | EPSARRAY |
This class has been replaced by GumbelDist .
Extends the class ContinuousDistribution for the extreme value (or Gumbel) distribution [100] (page 2), with location parameter \(\alpha\) and scale parameter \(\lambda> 0\). It has density
\[ f (x) = \lambda e^{-\lambda(x-\alpha)} e^{-e^{-\lambda(x-\alpha)}}, \qquad\qquad\mbox{for } -\infty< x < \infty, \tag{fextremevalue} \]
\[ F(x) = e^{-e^{-\lambda(x - \alpha)}} \qquad\qquad\mbox{for } -\infty< x < \infty, \tag{Fextreme} \]
and inverse distribution function
\[ F^{-1}(u) = -\ln(-\ln(u))/\lambda+ \alpha, \qquad\mbox{for } 0 \le u \le1. \]
ExtremeValueDist | ( | ) |
THIS CLASS HAS BEEN REPLACED BY GumbelDist .
Constructs a ExtremeValueDist
object with parameters \(\alpha\) = 0 and \(\lambda\) = 1.
ExtremeValueDist | ( | double | alpha, |
double | lambda | ||
) |
THIS CLASS HAS BEEN REPLACED BY GumbelDist .
Constructs a ExtremeValueDist
object with parameters \(\alpha\) = alpha
and \(\lambda\) = lambda
.
double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
x | value at which the complementary distribution function is evaluated |
x
Implements Distribution.
double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
x | value at which the distribution function is evaluated |
x
Implements Distribution.
|
static |
THIS CLASS HAS BEEN REPLACED BY GumbelDist .
Computes the distribution function.
|
static |
Creates a new instance of an extreme value distribution with parameters \(\alpha\) and \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
|
static |
Computes and returns the mean, \(E[X] = \alpha+ \gamma/\lambda\), of the extreme value distribution with parameters \(\alpha\) and \(\lambda\), where \(\gamma= 0.5772156649\) is the Euler-Mascheroni constant.
|
static |
Estimates the parameters \((\alpha,\lambda)\) of the extreme value distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).
The estimates are returned in a two-element array, in regular order: [ \(\alpha\), \(\lambda\)]. The maximum likelihood estimators are the values \((\hat{\alpha}, \hat{\lambda})\) that satisfy the equations:
\begin{align*} \hat{\lambda} & = \bar{x}_n - \frac{\sum_{i=1}^n x_i e^{- \hat{\lambda} x_i}}{\sum_{i=1}^n e^{-\hat{\lambda} x_i}} \\ \hat{\alpha} & = - \frac{1}{\hat{\lambda}} \ln\left( \frac{1}{n} \sum_{i=1}^n e^{-\hat{\lambda} x_i} \right), \end{align*}
where \(\bar{x}_n\) is the average of \(x[0],…,x[n-1]\) [57] (page 89).
x | the list of observations used to evaluate parameters |
n | the number of observations used to evaluate parameters |
double [] getParams | ( | ) |
Return a table containing the parameters of the current distribution.
This table is put in regular order: [ \(\alpha\), \(\lambda\)].
Implements Distribution.
|
static |
Computes and returns the standard deviation of the extreme value distribution with parameters \(\alpha\) and \(\lambda\).
|
static |
Computes and returns the variance, \(\mbox{Var}[X] = \pi^2/(6\lambda^2)\), of the extreme value distribution with parameters \(\alpha\) and \(\lambda\).
double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u
Implements Distribution.