SSJ  3.3.1
Stochastic Simulation in Java
Classes | Public Member Functions | Static Public Member Functions | List of all members
GumbelDist Class Reference

Extends the class ContinuousDistribution for the Gumbel distribution [100]  (page 2), with location parameter \(\delta\) and scale parameter \(\beta\neq0\). More...

Inheritance diagram for GumbelDist:
[legend]
Collaboration diagram for GumbelDist:
[legend]

Public Member Functions

 GumbelDist ()
 Constructor for the standard Gumbel distribution with parameters \(\beta\) = 1 and \(\delta\) = 0.
 
 GumbelDist (double beta, double delta)
 Constructs a GumbelDist object with parameters \(\beta\) = beta and \(\delta\) = delta.
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
double getBeta ()
 Returns the parameter \(\beta\) of this object.
 
double getDelta ()
 Returns the parameter \(\delta\) of this object.
 
void setParams (double beta, double delta)
 Sets the parameters \(\beta\) and \(\delta\) of this object.
 
double [] getParams ()
 Return a table containing the parameters of the current distribution. More...
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (double beta, double delta, double x)
 Computes and returns the density function.
 
static double cdf (double beta, double delta, double x)
 Computes and returns the distribution function.
 
static double barF (double beta, double delta, double x)
 Computes and returns the complementary distribution function \(1 - F(x)\).
 
static double inverseF (double beta, double delta, double u)
 Computes and returns the inverse distribution function.
 
static double [] getMLE (double[] x, int n)
 Estimates the parameters \((\beta,\delta)\) of the Gumbel distribution, assuming that \(\beta> 0\), and using the maximum likelihood method with the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
 
static double [] getMLEmin (double[] x, int n)
 Similar to getMLE, but for the case \(\beta< 0\). More...
 
static GumbelDist getInstanceFromMLE (double[] x, int n)
 Creates a new instance of an Gumbel distribution with parameters \(\beta\) and \(\delta\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\), assuming that \(\beta> 0\). More...
 
static GumbelDist getInstanceFromMLEmin (double[] x, int n)
 Similar to getInstanceFromMLE, but for the case \(\beta< 0\). More...
 
static double getMean (double beta, double delta)
 Returns the mean, \(E[X] = \delta+ \gamma\beta\), of the Gumbel distribution with parameters \(\beta\) and \(\delta\), where \(\gamma= 0.5772156649015329\) is the Euler-Mascheroni constant. More...
 
static double getVariance (double beta, double delta)
 Returns the variance \(\mbox{Var}[X] = \pi^2 \beta^2\!/6\) of the Gumbel distribution with parameters \(\beta\) and \(\delta\). More...
 
static double getStandardDeviation (double beta, double delta)
 Returns the standard deviation of the Gumbel distribution with parameters \(\beta\) and \(\delta\). More...
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Extends the class ContinuousDistribution for the Gumbel distribution [100]  (page 2), with location parameter \(\delta\) and scale parameter \(\beta\neq0\).

Using the notation \(z = (x-\delta)/\beta\), it has density

\[ f (x) = \frac{e^{-z} e^{-e^{-z}}}{|\beta|}, \qquad\mbox{for } -\infty< x < \infty \tag{densgumbel} \]

and distribution function

\[ F(x) = \left\{ \begin{array}{ll} e^{-e^{-z}}, \qquad & \mbox{for } \beta> 0 \\ 1 - e^{-e^{-z}}, \qquad & \mbox{for } \beta< 0. \end{array} \right. \]

Member Function Documentation

◆ barF()

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ cdf()

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ getInstanceFromMLE()

static GumbelDist getInstanceFromMLE ( double []  x,
int  n 
)
static

Creates a new instance of an Gumbel distribution with parameters \(\beta\) and \(\delta\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\), assuming that \(\beta> 0\).

Parameters
xthe list of observations to use to evaluate parameters
nthe number of observations to use to evaluate parameters

◆ getInstanceFromMLEmin()

static GumbelDist getInstanceFromMLEmin ( double []  x,
int  n 
)
static

Similar to getInstanceFromMLE, but for the case \(\beta< 0\).

Parameters
xthe list of observations to use to evaluate parameters
nthe number of observations to use to evaluate parameters

◆ getMean()

static double getMean ( double  beta,
double  delta 
)
static

Returns the mean, \(E[X] = \delta+ \gamma\beta\), of the Gumbel distribution with parameters \(\beta\) and \(\delta\), where \(\gamma= 0.5772156649015329\) is the Euler-Mascheroni constant.

Returns
the mean of the Extreme Value distribution \(E[X] = \delta+ \gamma* \beta\)

◆ getMLE()

static double [] getMLE ( double []  x,
int  n 
)
static

Estimates the parameters \((\beta,\delta)\) of the Gumbel distribution, assuming that \(\beta> 0\), and using the maximum likelihood method with the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).

The estimates are returned in a two-element array, in regular order: [ \(\beta\), \(\delta\)]. The maximum likelihood estimators are the values \((\hat{\beta}, \hat{\delta})\) that satisfy the equations:

\begin{align*} \hat{\beta} & = \bar{x}_n - \frac{\sum_{i=1}^n x_i  e^{- x_i/\hat{\beta}}}{\sum_{i=1}^n e^{- x_i / \hat{\beta}}} \\ \hat{\delta} & = -{\hat{\beta}} \ln\left( \frac{1}{n} \sum_{i=1}^n e^{-x_i/\hat{\beta}} \right), \end{align*}

where \(\bar{x}_n\) is the average of \(x[0],…,x[n-1]\).

Parameters
xthe list of observations used to evaluate parameters
nthe number of observations used to evaluate parameters
Returns
returns the parameters [ \(\hat{\delta}\), \(\hat{\beta}\)]

◆ getMLEmin()

static double [] getMLEmin ( double []  x,
int  n 
)
static

Similar to getMLE, but for the case \(\beta< 0\).

Parameters
xthe list of observations used to evaluate parameters
nthe number of observations used to evaluate parameters
Returns
returns the parameters [ \(\hat{\delta}\), \(\hat{\beta}\)]

◆ getParams()

double [] getParams ( )

Return a table containing the parameters of the current distribution.

This table is put in regular order: [ \(\beta\), \(\delta\)].

Implements Distribution.

◆ getStandardDeviation()

static double getStandardDeviation ( double  beta,
double  delta 
)
static

Returns the standard deviation of the Gumbel distribution with parameters \(\beta\) and \(\delta\).

Returns
the standard deviation of the Gumbel distribution

◆ getVariance()

static double getVariance ( double  beta,
double  delta 
)
static

Returns the variance \(\mbox{Var}[X] = \pi^2 \beta^2\!/6\) of the Gumbel distribution with parameters \(\beta\) and \(\delta\).

Returns
the variance of the Gumbel distribution \(\mbox{Var}[X] = ()\pi\beta)^2/6\)

◆ inverseF()

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.


The documentation for this class was generated from the following file: