SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | List of all members
ExponentialDistFromMean Class Reference

Extends the ExponentialDist class with a constructor accepting as argument the mean \(1/\lambda\) instead of the rate \(\lambda\). More...

Inheritance diagram for ExponentialDistFromMean:
[legend]
Collaboration diagram for ExponentialDistFromMean:
[legend]

Public Member Functions

 ExponentialDistFromMean (double mean)
 Constructs a new exponential distribution with mean mean. More...
 
void setMean (double mean)
 Calls umontreal.ssj.probdist.ExponentialDist.setLambda(double) with argument 1/mean to change the mean of this distribution. More...
 
- Public Member Functions inherited from ExponentialDist
 ExponentialDist ()
 Constructs an ExponentialDist object with parameter \(\lambda\) = 1.
 
 ExponentialDist (double lambda)
 Constructs an ExponentialDist object with parameter \(\lambda\) = lambda.
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
double getLambda ()
 Returns the value of \(\lambda\) for this object.
 
void setLambda (double lambda)
 Sets the value of \(\lambda\) for this object.
 
double [] getParams ()
 Return a table containing the parameters of the current distribution.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Additional Inherited Members

- Static Public Member Functions inherited from ExponentialDist
static double density (double lambda, double x)
 Computes the density function.
 
static double cdf (double lambda, double x)
 Computes the distribution function.
 
static double barF (double lambda, double x)
 Computes the complementary distribution function.
 
static double inverseF (double lambda, double u)
 Computes the inverse distribution function.
 
static double [] getMLE (double[] x, int n)
 Estimates the parameter \(\lambda\) of the exponential distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
 
static ExponentialDist getInstanceFromMLE (double[] x, int n)
 Creates a new instance of an exponential distribution with parameter \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
 
static double getMean (double lambda)
 Computes and returns the mean, \(E[X] = 1/\lambda\), of the exponential distribution with parameter \(\lambda\). More...
 
static double getVariance (double lambda)
 Computes and returns the variance, \(\mbox{Var}[X] = 1/\lambda^2\), of the exponential distribution with parameter \(\lambda\). More...
 
static double getStandardDeviation (double lambda)
 Computes and returns the standard deviation of the exponential distribution with parameter \(\lambda\). More...
 
- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Extends the ExponentialDist class with a constructor accepting as argument the mean \(1/\lambda\) instead of the rate \(\lambda\).

Constructor & Destructor Documentation

◆ ExponentialDistFromMean()

ExponentialDistFromMean ( double  mean)

Constructs a new exponential distribution with mean mean.

Parameters
meanthe required mean.

Member Function Documentation

◆ setMean()

void setMean ( double  mean)

Calls umontreal.ssj.probdist.ExponentialDist.setLambda(double) with argument 1/mean to change the mean of this distribution.

Parameters
meanthe new mean.

The documentation for this class was generated from the following file: