|
| ExponentialDist () |
| Constructs an ExponentialDist object with parameter \(\lambda\) = 1.
|
|
| ExponentialDist (double lambda) |
| Constructs an ExponentialDist object with parameter \(\lambda\) = lambda .
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
double | getLambda () |
| Returns the value of \(\lambda\) for this object.
|
|
void | setLambda (double lambda) |
| Sets the value of \(\lambda\) for this object.
|
|
double [] | getParams () |
| Return a table containing the parameters of the current distribution.
|
|
String | toString () |
| Returns a String containing information about the current distribution.
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (double lambda, double x) |
| Computes the density function.
|
|
static double | cdf (double lambda, double x) |
| Computes the distribution function.
|
|
static double | barF (double lambda, double x) |
| Computes the complementary distribution function.
|
|
static double | inverseF (double lambda, double u) |
| Computes the inverse distribution function.
|
|
static double [] | getMLE (double[] x, int n) |
| Estimates the parameter \(\lambda\) of the exponential distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
|
|
static ExponentialDist | getInstanceFromMLE (double[] x, int n) |
| Creates a new instance of an exponential distribution with parameter \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
|
|
static double | getMean (double lambda) |
| Computes and returns the mean, \(E[X] = 1/\lambda\), of the exponential distribution with parameter \(\lambda\). More...
|
|
static double | getVariance (double lambda) |
| Computes and returns the variance, \(\mbox{Var}[X] = 1/\lambda^2\), of the exponential distribution with parameter \(\lambda\). More...
|
|
static double | getStandardDeviation (double lambda) |
| Computes and returns the standard deviation of the exponential distribution with parameter \(\lambda\). More...
|
|
Extends the class ContinuousDistribution for the exponential distribution [99] (page 494) with mean \(1/\lambda\) where \(\lambda> 0\).
Its density is
\[ f(x) = \lambda e^{-\lambda x} \qquad\mbox{for }x\ge0, \tag{fexpon} \]
its distribution function is
\[ F(x) = 1 - e^{-\lambda x},\qquad\mbox{for }x \ge0, \tag{Fexpon} \]
and its inverse distribution function is
\[ F^{-1}(u) = -\ln(1-u)/\lambda, \qquad\mbox{for } 0 < u < 1. \]
static double [] getMLE |
( |
double [] |
x, |
|
|
int |
n |
|
) |
| |
|
static |
Estimates the parameter \(\lambda\) of the exponential distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).
The estimate is returned in a one-element array, as element 0. The equation of the maximum likelihood is defined as \(\hat{\lambda} = 1/\bar{x}_n\), where \(\bar{x}_n\) is the average of \(x[0],…,x[n-1]\) (see [99] (page 506)).
- Parameters
-
x | the list of observations used to evaluate parameters |
n | the number of observations used to evaluate parameters |
- Returns
- returns the parameter [ \(\hat{\lambda}\)]