SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Static Public Member Functions | List of all members
ExponentialDist Class Reference

Extends the class ContinuousDistribution for the exponential distribution [99]  (page 494) with mean \(1/\lambda\) where \(\lambda> 0\). More...

Inheritance diagram for ExponentialDist:
[legend]
Collaboration diagram for ExponentialDist:
[legend]

Public Member Functions

 ExponentialDist ()
 Constructs an ExponentialDist object with parameter \(\lambda\) = 1.
 
 ExponentialDist (double lambda)
 Constructs an ExponentialDist object with parameter \(\lambda\) = lambda.
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
double getLambda ()
 Returns the value of \(\lambda\) for this object.
 
void setLambda (double lambda)
 Sets the value of \(\lambda\) for this object.
 
double [] getParams ()
 Return a table containing the parameters of the current distribution.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (double lambda, double x)
 Computes the density function.
 
static double cdf (double lambda, double x)
 Computes the distribution function.
 
static double barF (double lambda, double x)
 Computes the complementary distribution function.
 
static double inverseF (double lambda, double u)
 Computes the inverse distribution function.
 
static double [] getMLE (double[] x, int n)
 Estimates the parameter \(\lambda\) of the exponential distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
 
static ExponentialDist getInstanceFromMLE (double[] x, int n)
 Creates a new instance of an exponential distribution with parameter \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
 
static double getMean (double lambda)
 Computes and returns the mean, \(E[X] = 1/\lambda\), of the exponential distribution with parameter \(\lambda\). More...
 
static double getVariance (double lambda)
 Computes and returns the variance, \(\mbox{Var}[X] = 1/\lambda^2\), of the exponential distribution with parameter \(\lambda\). More...
 
static double getStandardDeviation (double lambda)
 Computes and returns the standard deviation of the exponential distribution with parameter \(\lambda\). More...
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Extends the class ContinuousDistribution for the exponential distribution [99]  (page 494) with mean \(1/\lambda\) where \(\lambda> 0\).

Its density is

\[ f(x) = \lambda e^{-\lambda x} \qquad\mbox{for }x\ge0, \tag{fexpon} \]

its distribution function is

\[ F(x) = 1 - e^{-\lambda x},\qquad\mbox{for }x \ge0, \tag{Fexpon} \]

and its inverse distribution function is

\[ F^{-1}(u) = -\ln(1-u)/\lambda, \qquad\mbox{for } 0 < u < 1. \]

Member Function Documentation

◆ barF()

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ cdf()

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ getInstanceFromMLE()

static ExponentialDist getInstanceFromMLE ( double []  x,
int  n 
)
static

Creates a new instance of an exponential distribution with parameter \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).

Parameters
xthe list of observations to use to evaluate parameters
nthe number of observations to use to evaluate parameters

◆ getMean()

static double getMean ( double  lambda)
static

Computes and returns the mean, \(E[X] = 1/\lambda\), of the exponential distribution with parameter \(\lambda\).

Returns
the mean of the exponential distribution \(E[X] = 1 / \lambda\)

◆ getMLE()

static double [] getMLE ( double []  x,
int  n 
)
static

Estimates the parameter \(\lambda\) of the exponential distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).

The estimate is returned in a one-element array, as element 0. The equation of the maximum likelihood is defined as \(\hat{\lambda} = 1/\bar{x}_n\), where \(\bar{x}_n\) is the average of \(x[0],…,x[n-1]\) (see [99]  (page 506)).

Parameters
xthe list of observations used to evaluate parameters
nthe number of observations used to evaluate parameters
Returns
returns the parameter [ \(\hat{\lambda}\)]

◆ getStandardDeviation()

static double getStandardDeviation ( double  lambda)
static

Computes and returns the standard deviation of the exponential distribution with parameter \(\lambda\).

Returns
the standard deviation of the exponential distribution

◆ getVariance()

static double getVariance ( double  lambda)
static

Computes and returns the variance, \(\mbox{Var}[X] = 1/\lambda^2\), of the exponential distribution with parameter \(\lambda\).

Returns
the variance of the Exponential distribution \(\mbox{Var}[X] = 1 / \lambda^2\)

◆ inverseF()

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.


The documentation for this class was generated from the following file: