| 
| 
  | ExponentialDist () | 
|   | Constructs an ExponentialDist object with parameter \(\lambda\) = 1. 
  | 
|   | 
| 
  | ExponentialDist (double lambda) | 
|   | Constructs an ExponentialDist object with parameter \(\lambda\) = lambda. 
  | 
|   | 
| 
double  | density (double x) | 
|   | 
| double  | cdf (double x) | 
|   | Returns the distribution function \(F(x)\).  More...
  | 
|   | 
| double  | barF (double x) | 
|   | Returns \(\bar{F}(x) = 1 - F(x)\).  More...
  | 
|   | 
| double  | inverseF (double u) | 
|   | Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).  More...
  | 
|   | 
| 
double  | getMean () | 
|   | Returns the mean of the distribution function. 
  | 
|   | 
| 
double  | getVariance () | 
|   | Returns the variance of the distribution function. 
  | 
|   | 
| 
double  | getStandardDeviation () | 
|   | Returns the standard deviation of the distribution function. 
  | 
|   | 
| 
double  | getLambda () | 
|   | Returns the value of \(\lambda\) for this object. 
  | 
|   | 
| 
void  | setLambda (double lambda) | 
|   | Sets the value of \(\lambda\) for this object. 
  | 
|   | 
| 
double []  | getParams () | 
|   | Return a table containing the parameters of the current distribution. 
  | 
|   | 
| 
String  | toString () | 
|   | Returns a String containing information about the current distribution. 
  | 
|   | 
| abstract double  | density (double x) | 
|   | Returns \(f(x)\), the density evaluated at \(x\).  More...
  | 
|   | 
| double  | barF (double x) | 
|   | Returns the complementary distribution function.  More...
  | 
|   | 
| double  | inverseBrent (double a, double b, double u, double tol) | 
|   | Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method.  More...
  | 
|   | 
| double  | inverseBisection (double u) | 
|   | Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection.  More...
  | 
|   | 
| double  | inverseF (double u) | 
|   | Returns the inverse distribution function \(x = F^{-1}(u)\).  More...
  | 
|   | 
| double  | getMean () | 
|   | Returns the mean.  More...
  | 
|   | 
| double  | getVariance () | 
|   | Returns the variance.  More...
  | 
|   | 
| double  | getStandardDeviation () | 
|   | Returns the standard deviation.  More...
  | 
|   | 
| double  | getXinf () | 
|   | Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\).  More...
  | 
|   | 
| double  | getXsup () | 
|   | Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\).  More...
  | 
|   | 
| void  | setXinf (double xa) | 
|   | Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\).  More...
  | 
|   | 
| void  | setXsup (double xb) | 
|   | Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\).  More...
  | 
|   | 
 | 
| 
static double  | density (double lambda, double x) | 
|   | Computes the density function. 
  | 
|   | 
| 
static double  | cdf (double lambda, double x) | 
|   | Computes the distribution function. 
  | 
|   | 
| 
static double  | barF (double lambda, double x) | 
|   | Computes the complementary distribution function. 
  | 
|   | 
| 
static double  | inverseF (double lambda, double u) | 
|   | Computes the inverse distribution function. 
  | 
|   | 
| static double []  | getMLE (double[] x, int n) | 
|   | Estimates the parameter \(\lambda\) of the exponential distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).  More...
  | 
|   | 
| static ExponentialDist  | getInstanceFromMLE (double[] x, int n) | 
|   | Creates a new instance of an exponential distribution with parameter \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).  More...
  | 
|   | 
| static double  | getMean (double lambda) | 
|   | Computes and returns the mean, \(E[X] = 1/\lambda\), of the exponential distribution with parameter \(\lambda\).  More...
  | 
|   | 
| static double  | getVariance (double lambda) | 
|   | Computes and returns the variance, \(\mbox{Var}[X] = 1/\lambda^2\), of the exponential distribution with parameter \(\lambda\).  More...
  | 
|   | 
| static double  | getStandardDeviation (double lambda) | 
|   | Computes and returns the standard deviation of the exponential distribution with parameter \(\lambda\).  More...
  | 
|   | 
Extends the class ContinuousDistribution for the exponential distribution [99]  (page 494) with mean \(1/\lambda\) where \(\lambda> 0\). 
Its density is  
\[ f(x) = \lambda e^{-\lambda x} \qquad\mbox{for }x\ge0, \tag{fexpon} \]
 its distribution function is  
\[ F(x) = 1 - e^{-\lambda x},\qquad\mbox{for }x \ge0, \tag{Fexpon} \]
 and its inverse distribution function is 
\[ F^{-1}(u) = -\ln(1-u)/\lambda, \qquad\mbox{for } 0 < u < 1. \]
   
  
  
      
        
          | static double [] getMLE  | 
          ( | 
          double []  | 
          x,  | 
         
        
           | 
           | 
          int  | 
          n  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
static   | 
  
 
Estimates the parameter \(\lambda\) of the exponential distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). 
The estimate is returned in a one-element array, as element 0. The equation of the maximum likelihood is defined as \(\hat{\lambda} = 1/\bar{x}_n\), where \(\bar{x}_n\) is the average of \(x[0],…,x[n-1]\) (see [99]  (page 506)). 
- Parameters
 - 
  
    | x | the list of observations used to evaluate parameters  | 
    | n | the number of observations used to evaluate parameters  | 
  
   
- Returns
 - returns the parameter [ \(\hat{\lambda}\)]