SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Static Public Member Functions | List of all members
ChiSquareDistQuick Class Reference

Provides a variant of ChiSquareDist with faster but less accurate methods. More...

Inheritance diagram for ChiSquareDistQuick:
[legend]
Collaboration diagram for ChiSquareDistQuick:
[legend]

Public Member Functions

 ChiSquareDistQuick (int n)
 Constructs a chi-square distribution with n degrees of freedom.
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
- Public Member Functions inherited from ChiSquareDist
 ChiSquareDist (int n)
 Constructs a chi-square distribution with n degrees of freedom.
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
int getN ()
 Returns the parameter \(n\) of this object.
 
void setN (int n)
 Sets the parameter \(n\) of this object.
 
double [] getParams ()
 Return a table containing the parameters of the current distribution.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double inverseF (int n, double u)
 Computes a quick-and-dirty approximation of \(F^{-1}(u)\), where \(F\) is the chi-square distribution with \(n\) degrees of freedom. More...
 
- Static Public Member Functions inherited from ChiSquareDist
static double density (int n, double x)
 Computes the density function ( Fchi2 ) for a chi-square distribution with \(n\) degrees of freedom.
 
static double cdf (int n, int d, double x)
 Computes the chi-square distribution function with \(n\) degrees of freedom, evaluated at \(x\). More...
 
static double barF (int n, int d, double x)
 Computes the complementary chi-square distribution function with \(n\) degrees of freedom, evaluated at \(x\). More...
 
static double inverseF (int n, double u)
 Computes an approximation of \(F^{-1}(u)\), where \(F\) is the chi-square distribution with \(n\) degrees of freedom. More...
 
static double [] getMLE (double[] x, int m)
 Estimates the parameter \(n\) of the chi-square distribution using the maximum likelihood method, from the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\). More...
 
static ChiSquareDist getInstanceFromMLE (double[] x, int m)
 Creates a new instance of a chi-square distribution with parameter \(n\) estimated using the maximum likelihood method based on the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\). More...
 
static double getMean (int n)
 Computes and returns the mean \(E[X] = n\) of the chi-square distribution with parameter \(n\). More...
 
static double [] getMomentsEstimate (double[] x, int m)
 Estimates and returns the parameter [ \(\hat{n}\)] of the chi-square distribution using the moments method based on the \(m\) observations in table \(x[i]\), \(i = 0, 1, …, m-1\). More...
 
static double getVariance (int n)
 Returns the variance \(\mbox{Var}[X] = 2n\) of the chi-square distribution with parameter \(n\). More...
 
static double getStandardDeviation (int n)
 Returns the standard deviation of the chi-square distribution with parameter \(n\). More...
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Protected Attributes inherited from ChiSquareDist
int n
 
double C1
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Provides a variant of ChiSquareDist with faster but less accurate methods.

The non-static version of inverseF calls the static version. This method is not very accurate for small \(n\) but becomes better as \(n\) increases. The other methods are the same as in ChiSquareDist.

Member Function Documentation

◆ inverseF() [1/2]

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.

◆ inverseF() [2/2]

static double inverseF ( int  n,
double  u 
)
static

Computes a quick-and-dirty approximation of \(F^{-1}(u)\), where \(F\) is the chi-square distribution with \(n\) degrees of freedom.

Uses the approximation given in Figure L.24 of [25]  over most of the range. For \(u < 0.02\) or \(u > 0.98\), it uses the approximation given in [73]  for \(n \ge10\), and returns 2.0 * inverseF(n/2, 6, u) for \(n < 10\) in order to avoid the loss of precision of the above approximations. When \(n \ge10\) or \(0.02 < u < 0.98\), it is between 20 to 30 times faster than the same method in ChiSquareDist for \(n\) between \(10\) and \(1000\) and even faster for larger \(n\).

Note that the number \(d\) of decimal digits of precision generally increases with \(n\). For \(n=3\), we only have \(d = 3\) over most of the range. For \(n=10\), \(d=5\) except far in the tails where \(d = 3\). For \(n=100\), one has more than \(d=7\) over most of the range and for \(n=1000\), at least \(d=8\). The cases \(n = 1\) and \(n = 2\) are exceptions, with precision of about \(d=10\).


The documentation for this class was generated from the following file: