|
| ChiSquareDist (int n) |
| Constructs a chi-square distribution with n degrees of freedom.
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
int | getN () |
| Returns the parameter \(n\) of this object.
|
|
void | setN (int n) |
| Sets the parameter \(n\) of this object.
|
|
double [] | getParams () |
| Return a table containing the parameters of the current distribution.
|
|
String | toString () |
| Returns a String containing information about the current distribution.
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (int n, double x) |
| Computes the density function ( Fchi2 ) for a chi-square distribution with \(n\) degrees of freedom.
|
|
static double | cdf (int n, int d, double x) |
| Computes the chi-square distribution function with \(n\) degrees of freedom, evaluated at \(x\). More...
|
|
static double | barF (int n, int d, double x) |
| Computes the complementary chi-square distribution function with \(n\) degrees of freedom, evaluated at \(x\). More...
|
|
static double | inverseF (int n, double u) |
| Computes an approximation of \(F^{-1}(u)\), where \(F\) is the chi-square distribution with \(n\) degrees of freedom. More...
|
|
static double [] | getMLE (double[] x, int m) |
| Estimates the parameter \(n\) of the chi-square distribution using the maximum likelihood method, from the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\). More...
|
|
static ChiSquareDist | getInstanceFromMLE (double[] x, int m) |
| Creates a new instance of a chi-square distribution with parameter \(n\) estimated using the maximum likelihood method based on the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\). More...
|
|
static double | getMean (int n) |
| Computes and returns the mean \(E[X] = n\) of the chi-square distribution with parameter \(n\). More...
|
|
static double [] | getMomentsEstimate (double[] x, int m) |
| Estimates and returns the parameter [ \(\hat{n}\)] of the chi-square distribution using the moments method based on the \(m\) observations in table \(x[i]\), \(i = 0, 1, …, m-1\). More...
|
|
static double | getVariance (int n) |
| Returns the variance \(\mbox{Var}[X] = 2n\) of the chi-square distribution with parameter \(n\). More...
|
|
static double | getStandardDeviation (int n) |
| Returns the standard deviation of the chi-square distribution with parameter \(n\). More...
|
|
Extends the class ContinuousDistribution for the chi-square distribution with \(n\) degrees of freedom, where \(n\) is a positive integer [99] (page 416).
Its density is
\[ f(x) = \frac{x^{(n/2)-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)},\qquad\mbox{for } x > 0 \tag{Fchi2} \]
where \(\Gamma(x)\) is the gamma function defined in ( Gamma ). The chi-square distribution is a special case of the gamma distribution with shape parameter \(n/2\) and scale parameter \(1/2\). Therefore, one can use the methods of GammaDist for this distribution.
The non-static versions of the methods cdf
, barF
, and inverseF
call the static version of the same name.
static double [] getMLE |
( |
double [] |
x, |
|
|
int |
m |
|
) |
| |
|
static |
Estimates the parameter \(n\) of the chi-square distribution using the maximum likelihood method, from the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\).
The estimate is returned in element 0 of the returned array.
- Parameters
-
x | the list of observations to use to evaluate parameters |
m | the number of observations to use to evaluate parameters |
- Returns
- returns the parameter [ \(\hat{n}\)]
static double inverseF |
( |
int |
n, |
|
|
double |
u |
|
) |
| |
|
static |
Computes an approximation of \(F^{-1}(u)\), where \(F\) is the chi-square distribution with \(n\) degrees of freedom.
Uses the approximation given in [17] and in Figure L.23 of [25] . It gives at least 6 decimal digits of precision, except far in the tails (that is, for \(u< 10^{-5}\) or \(u > 1 - 10^{-5}\)) where the function calls the method GammaDist.inverseF (n/2, 7, u)
and multiplies the result by 2.0. To get better precision, one may call GammaDist.inverseF
, but this method is slower than the current method, especially for large \(n\). For instance, for \(n = \) 16, 1024, and 65536, the GammaDist.inverseF
method is 2, 5, and 8 times slower, respectively, than the current method.