|
|
| ChiSquareDist (int n) |
| | Constructs a chi-square distribution with n degrees of freedom.
|
| |
|
double | density (double x) |
| |
| double | cdf (double x) |
| | Returns the distribution function \(F(x)\). More...
|
| |
| double | barF (double x) |
| | Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
| |
| double | inverseF (double u) |
| | Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
| |
|
double | getMean () |
| | Returns the mean of the distribution function.
|
| |
|
double | getVariance () |
| | Returns the variance of the distribution function.
|
| |
|
double | getStandardDeviation () |
| | Returns the standard deviation of the distribution function.
|
| |
|
int | getN () |
| | Returns the parameter \(n\) of this object.
|
| |
|
void | setN (int n) |
| | Sets the parameter \(n\) of this object.
|
| |
|
double [] | getParams () |
| | Return a table containing the parameters of the current distribution.
|
| |
|
String | toString () |
| | Returns a String containing information about the current distribution.
|
| |
| abstract double | density (double x) |
| | Returns \(f(x)\), the density evaluated at \(x\). More...
|
| |
| double | barF (double x) |
| | Returns the complementary distribution function. More...
|
| |
| double | inverseBrent (double a, double b, double u, double tol) |
| | Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
| |
| double | inverseBisection (double u) |
| | Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
| |
| double | inverseF (double u) |
| | Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
| |
| double | getMean () |
| | Returns the mean. More...
|
| |
| double | getVariance () |
| | Returns the variance. More...
|
| |
| double | getStandardDeviation () |
| | Returns the standard deviation. More...
|
| |
| double | getXinf () |
| | Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
| |
| double | getXsup () |
| | Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
| |
| void | setXinf (double xa) |
| | Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
| |
| void | setXsup (double xb) |
| | Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
| |
|
|
static double | density (int n, double x) |
| | Computes the density function ( Fchi2 ) for a chi-square distribution with \(n\) degrees of freedom.
|
| |
| static double | cdf (int n, int d, double x) |
| | Computes the chi-square distribution function with \(n\) degrees of freedom, evaluated at \(x\). More...
|
| |
| static double | barF (int n, int d, double x) |
| | Computes the complementary chi-square distribution function with \(n\) degrees of freedom, evaluated at \(x\). More...
|
| |
| static double | inverseF (int n, double u) |
| | Computes an approximation of \(F^{-1}(u)\), where \(F\) is the chi-square distribution with \(n\) degrees of freedom. More...
|
| |
| static double [] | getMLE (double[] x, int m) |
| | Estimates the parameter \(n\) of the chi-square distribution using the maximum likelihood method, from the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\). More...
|
| |
| static ChiSquareDist | getInstanceFromMLE (double[] x, int m) |
| | Creates a new instance of a chi-square distribution with parameter \(n\) estimated using the maximum likelihood method based on the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\). More...
|
| |
| static double | getMean (int n) |
| | Computes and returns the mean \(E[X] = n\) of the chi-square distribution with parameter \(n\). More...
|
| |
| static double [] | getMomentsEstimate (double[] x, int m) |
| | Estimates and returns the parameter [ \(\hat{n}\)] of the chi-square distribution using the moments method based on the \(m\) observations in table \(x[i]\), \(i = 0, 1, …, m-1\). More...
|
| |
| static double | getVariance (int n) |
| | Returns the variance \(\mbox{Var}[X] = 2n\) of the chi-square distribution with parameter \(n\). More...
|
| |
| static double | getStandardDeviation (int n) |
| | Returns the standard deviation of the chi-square distribution with parameter \(n\). More...
|
| |
Extends the class ContinuousDistribution for the chi-square distribution with \(n\) degrees of freedom, where \(n\) is a positive integer [99] (page 416).
Its density is
\[ f(x) = \frac{x^{(n/2)-1}e^{-x/2}}{2^{n/2}\Gamma(n/2)},\qquad\mbox{for } x > 0 \tag{Fchi2} \]
where \(\Gamma(x)\) is the gamma function defined in ( Gamma ). The chi-square distribution is a special case of the gamma distribution with shape parameter \(n/2\) and scale parameter \(1/2\). Therefore, one can use the methods of GammaDist for this distribution.
The non-static versions of the methods cdf, barF, and inverseF call the static version of the same name.
| static double [] getMLE |
( |
double [] |
x, |
|
|
int |
m |
|
) |
| |
|
static |
Estimates the parameter \(n\) of the chi-square distribution using the maximum likelihood method, from the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\).
The estimate is returned in element 0 of the returned array.
- Parameters
-
| x | the list of observations to use to evaluate parameters |
| m | the number of observations to use to evaluate parameters |
- Returns
- returns the parameter [ \(\hat{n}\)]
| static double inverseF |
( |
int |
n, |
|
|
double |
u |
|
) |
| |
|
static |
Computes an approximation of \(F^{-1}(u)\), where \(F\) is the chi-square distribution with \(n\) degrees of freedom.
Uses the approximation given in [17] and in Figure L.23 of [25] . It gives at least 6 decimal digits of precision, except far in the tails (that is, for \(u< 10^{-5}\) or \(u > 1 - 10^{-5}\)) where the function calls the method GammaDist.inverseF (n/2, 7, u) and multiplies the result by 2.0. To get better precision, one may call GammaDist.inverseF, but this method is slower than the current method, especially for large \(n\). For instance, for \(n = \) 16, 1024, and 65536, the GammaDist.inverseF method is 2, 5, and 8 times slower, respectively, than the current method.