SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Protected Member Functions | Protected Attributes | Package Attributes | List of all members
MultivariateGeometricBrownianMotion Class Reference

This class is a multivariate version of GeometricBrownianMotion. More...

Inheritance diagram for MultivariateGeometricBrownianMotion:
[legend]
Collaboration diagram for MultivariateGeometricBrownianMotion:
[legend]

Public Member Functions

 MultivariateGeometricBrownianMotion (int c, double[] x0, double[] mu, double[] sigma, MultivariateBrownianMotion mbm)
 Constructs a new MultivariateGeometricBrownianMotion with parameters \(\mu= \mathtt{mu}\), \(\sigma= \mathtt{sigma}\), and \(S(t_0) = \mathtt{x0}\), using mbm as the underlying MultivariateBrownianMotion. More...
 
void setObservationTimes (double[] t, int d)
 Sets the observation times of the MultivariateGeometricBrownianMotion, but also those of the inner MultivariateBrownianMotion.
 
double [] nextObservationVector ()
 
void nextObservationVector (double[] obs)
 Generates and returns the vector of next observations.
 
double [] generatePath ()
 
void resetStartProcess ()
 Same as in StochasticProcess, but also invokes resetStartProcess for the underlying BrownianMotion object.
 
void setParams (int c, double[] x0, double[] mu, double[] sigma)
 Sets the parameters \(S(t_0) = \mathtt{x0}\), \(\mu= \mathtt{mu}\) and \(\sigma= \mathtt{sigma}\) of the process. More...
 
void setStream (RandomStream stream)
 Resets the random stream for the underlying Brownian motion to stream.
 
RandomStream getStream ()
 Returns the random stream for the underlying Brownian motion.
 
NormalGen getGen ()
 Returns the normal random variate generator used.
 
MultivariateBrownianMotion getBrownianMotion ()
 Returns a reference to the MultivariateBrownianMotion object used to generate the process.
 
- Public Member Functions inherited from MultivariateStochasticProcess
abstract double [] generatePath ()
 Generates, returns, and saves the sample path. More...
 
void getSubpath (double[] subpath, int[] pathIndices)
 Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
 
void setObservationTimes (double[] t, int d)
 Sets the observation times of the process to a copy of t, with. More...
 
void getObservation (int j, double[] obs)
 Returns \(\mathbf{X}(t_j)\) in the \(c\)-dimensional vector obs.
 
double getObservation (int j, int i)
 Returns \(X_i(t_j)\) from the current sample path.
 
abstract void nextObservationVector (double[] obs)
 Generates and returns in obs the next observation. More...
 
void getCurrentObservation (double[] obs)
 Returns the value of the last generated observation. More...
 
double [] getX0 (double[] x0)
 Returns in x0 the initial value \(\mathbf{X}(t_0)\) for this process.
 
int getDimension ()
 Returns the dimension of \(\mathbf{X}\).
 
- Public Member Functions inherited from StochasticProcess
void setObservationTimes (double[] T, int d)
 Sets the observation times of the process to a copy of T, with. More...
 
void setObservationTimes (double delta, int d)
 Sets equidistant observation times at \(t_j = j\delta\), for. More...
 
double [] getObservationTimes ()
 Returns a reference to the array that contains the observation times. More...
 
int getNumObservationTimes ()
 Returns the number \(d\) of observation times, excluding the time \(t_0\).
 
abstract double [] generatePath ()
 Generates, returns, and saves the sample path \(\{X(t_0), X(t_1), \dots, X(t_d)\}\). More...
 
double [] generatePath (RandomStream stream)
 Same as generatePath(), but first resets the stream to stream.
 
double [] getPath ()
 Returns a reference to the last generated sample path \(\{X(t_0), ... , X(t_d)\}\). More...
 
void getSubpath (double[] subpath, int[] pathIndices)
 Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
 
double getObservation (int j)
 Returns \(X(t_j)\) from the current sample path. More...
 
void resetStartProcess ()
 Resets the observation counter to its initial value \(j=0\), so that the current observation \(X(t_j)\) becomes \(X(t_0)\). More...
 
boolean hasNextObservation ()
 Returns true if \(j<d\), where \(j\) is the number of observations of the current sample path generated since the last call to resetStartProcess. More...
 
double nextObservation ()
 Generates and returns the next observation \(X(t_j)\) of the stochastic process. More...
 
int getCurrentObservationIndex ()
 Returns the value of the index \(j\) corresponding to the time. More...
 
double getCurrentObservation ()
 Returns the value of the last generated observation \(X(t_j)\).
 
double getX0 ()
 Returns the initial value \(X(t_0)\) for this process.
 
void setX0 (double s0)
 Sets the initial value \(X(t_0)\) for this process to s0, and reinitializes.
 
abstract void setStream (RandomStream stream)
 Resets the random stream of the underlying generator to stream.
 
abstract RandomStream getStream ()
 Returns the random stream of the underlying generator.
 
int [] getArrayMappingCounterToIndex ()
 Returns a reference to an array that maps an integer \(k\) to \(i_k\), the index of the observation \(S(t_{i_k})\) corresponding to the \(k\)-th observation to be generated for a sample path of this process. More...
 

Protected Member Functions

void init ()
 
- Protected Member Functions inherited from MultivariateStochasticProcess
void init ()
 
void createPath ()
 
- Protected Member Functions inherited from StochasticProcess
void init ()
 

Protected Attributes

NormalGen gen
 
MultivariateBrownianMotion mbm
 
double [] mu
 
double [] mudt
 
- Protected Attributes inherited from MultivariateStochasticProcess
double [] x0
 
int c = 1
 
- Protected Attributes inherited from StochasticProcess
boolean observationTimesSet = false
 
double x0 = 0.0
 
int d = -1
 
int observationIndex = 0
 
int observationCounter = 0
 
double [] t
 
double [] path
 
int [] observationIndexFromCounter
 

Package Attributes

double [] sigma
 

Detailed Description

This class is a multivariate version of GeometricBrownianMotion.

It represents a multivariate GBM process \(\{\mathbf{S}(t) = (S_1(t),…,S_c(t)),  t\ge0\}\), which can be written as

\[ S_i(t) = S_i(0) \exp\left[ X_i(t) \right], \tag{GBM2} \]

where \(\mathbf{X}(t) = (X_1(t),…,X_c(t))\) is a multivariate Brownian motion. The GBM process is simulated by simulating the BM process \(\mathbf{X}\) (which is stored internally) and taking the exponential.

Constructor & Destructor Documentation

◆ MultivariateGeometricBrownianMotion()

MultivariateGeometricBrownianMotion ( int  c,
double []  x0,
double []  mu,
double []  sigma,
MultivariateBrownianMotion  mbm 
)

Constructs a new MultivariateGeometricBrownianMotion with parameters \(\mu= \mathtt{mu}\), \(\sigma= \mathtt{sigma}\), and \(S(t_0) = \mathtt{x0}\), using mbm as the underlying MultivariateBrownianMotion.

The parameters of mbm are automatically reset to \(\mu-\sigma^2/2\) and \(\sigma\), regardless of the original parameters of mbm. The correlation structure is determined by the underlying MultivariateBrownianMotion. The observation times are the same as those of mbm. The generation method depends on that of mbm (sequential, bridge sampling, PCA, etc.).

Member Function Documentation

◆ setParams()

void setParams ( int  c,
double []  x0,
double []  mu,
double []  sigma 
)

Sets the parameters \(S(t_0) = \mathtt{x0}\), \(\mu= \mathtt{mu}\) and \(\sigma= \mathtt{sigma}\) of the process.

Warning: This method will recompute some quantities stored internally, which may be slow if called repeatedly.


The documentation for this class was generated from the following file: