SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Protected Member Functions | Protected Attributes | Package Attributes | List of all members
GeometricBrownianMotion Class Reference

Represents a geometric Brownian motion (GBM) process \(\{S(t), t\ge0\}\), which evolves according to the stochastic differential equation. More...

Inheritance diagram for GeometricBrownianMotion:
[legend]
Collaboration diagram for GeometricBrownianMotion:
[legend]

Public Member Functions

 GeometricBrownianMotion (double s0, double mu, double sigma, RandomStream stream)
 Same as GeometricBrownianMotion (s0, mu, sigma, new BrownianMotion (0.0, 0.0, 1.0, stream)).
 
 GeometricBrownianMotion (double s0, double mu, double sigma, BrownianMotion bm)
 Constructs a new GeometricBrownianMotion with parameters \(\mu= \mathtt{mu}\), \(\sigma= \mathtt{sigma}\), and \(S(t_0) = \mathtt{s0}\), using bm as the underlying BrownianMotion. More...
 
void setObservationTimes (double[] t, int d)
 
double nextObservation ()
 
double [] generatePath ()
 
double [] generatePath (RandomStream stream)
 
void resetStartProcess ()
 Same as in StochasticProcess, but also invokes resetStartProcess for the underlying BrownianMotion object.
 
void setParams (double s0, double mu, double sigma)
 Sets the parameters \(S(t_0) = \mathtt{s0}\), \(\mu= \mathtt{mu}\) and \(\sigma= \mathtt{sigma}\) of the process. More...
 
void setStream (RandomStream stream)
 Resets the umontreal.ssj.rng.RandomStream for the underlying Brownian motion to stream.
 
RandomStream getStream ()
 Returns the umontreal.ssj.rng.RandomStream for the underlying Brownian motion.
 
double getMu ()
 Returns the value of \(\mu\).
 
double getSigma ()
 Returns the value of \(\sigma\).
 
NormalGen getGen ()
 Returns the umontreal.ssj.randvar.NormalGen used.
 
BrownianMotion getBrownianMotion ()
 Returns a reference to the BrownianMotion object used to generate the process.
 
- Public Member Functions inherited from StochasticProcess
void setObservationTimes (double[] T, int d)
 Sets the observation times of the process to a copy of T, with. More...
 
void setObservationTimes (double delta, int d)
 Sets equidistant observation times at \(t_j = j\delta\), for. More...
 
double [] getObservationTimes ()
 Returns a reference to the array that contains the observation times. More...
 
int getNumObservationTimes ()
 Returns the number \(d\) of observation times, excluding the time \(t_0\).
 
abstract double [] generatePath ()
 Generates, returns, and saves the sample path \(\{X(t_0), X(t_1), \dots, X(t_d)\}\). More...
 
double [] generatePath (RandomStream stream)
 Same as generatePath(), but first resets the stream to stream.
 
double [] getPath ()
 Returns a reference to the last generated sample path \(\{X(t_0), ... , X(t_d)\}\). More...
 
void getSubpath (double[] subpath, int[] pathIndices)
 Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
 
double getObservation (int j)
 Returns \(X(t_j)\) from the current sample path. More...
 
void resetStartProcess ()
 Resets the observation counter to its initial value \(j=0\), so that the current observation \(X(t_j)\) becomes \(X(t_0)\). More...
 
boolean hasNextObservation ()
 Returns true if \(j<d\), where \(j\) is the number of observations of the current sample path generated since the last call to resetStartProcess. More...
 
double nextObservation ()
 Generates and returns the next observation \(X(t_j)\) of the stochastic process. More...
 
int getCurrentObservationIndex ()
 Returns the value of the index \(j\) corresponding to the time. More...
 
double getCurrentObservation ()
 Returns the value of the last generated observation \(X(t_j)\).
 
double getX0 ()
 Returns the initial value \(X(t_0)\) for this process.
 
void setX0 (double s0)
 Sets the initial value \(X(t_0)\) for this process to s0, and reinitializes.
 
abstract void setStream (RandomStream stream)
 Resets the random stream of the underlying generator to stream.
 
abstract RandomStream getStream ()
 Returns the random stream of the underlying generator.
 
int [] getArrayMappingCounterToIndex ()
 Returns a reference to an array that maps an integer \(k\) to \(i_k\), the index of the observation \(S(t_{i_k})\) corresponding to the \(k\)-th observation to be generated for a sample path of this process. More...
 

Protected Member Functions

void init ()
 
- Protected Member Functions inherited from StochasticProcess
void init ()
 

Protected Attributes

NormalGen gen
 
BrownianMotion bm
 
double mu
 
double [] mudt
 
- Protected Attributes inherited from StochasticProcess
boolean observationTimesSet = false
 
double x0 = 0.0
 
int d = -1
 
int observationIndex = 0
 
int observationCounter = 0
 
double [] t
 
double [] path
 
int [] observationIndexFromCounter
 

Package Attributes

double sigma
 

Detailed Description

Represents a geometric Brownian motion (GBM) process \(\{S(t), t\ge0\}\), which evolves according to the stochastic differential equation.

\[ dS(t) = \mu S(t) dt + \sigma S(t) dB(t), \tag{GBM} \]

where \(\mu\) and \(\sigma\) are the drift and volatility parameters, and \(\{B(t),  t\ge0\}\) is a standard Brownian motion (for which \(B(t)\sim N(0,t)\)). This process can also be written as the exponential of a Brownian motion:

\[ S(t) = S(0) \exp\left[ (\mu- \sigma^2/2) t + \sigma B(t) \right] = S(0) \exp\left[ X(t) \right], \tag{GBM2} \]

where \(X(t) = (\mu- \sigma^2/2) t + \sigma B(t)\). The GBM process is simulated by simulating the BM process \(X\) and taking the exponential. This BM process is stored internally.

Constructor & Destructor Documentation

◆ GeometricBrownianMotion()

GeometricBrownianMotion ( double  s0,
double  mu,
double  sigma,
BrownianMotion  bm 
)

Constructs a new GeometricBrownianMotion with parameters \(\mu= \mathtt{mu}\), \(\sigma= \mathtt{sigma}\), and \(S(t_0) = \mathtt{s0}\), using bm as the underlying BrownianMotion.

The parameters of bm are automatically reset to \(\mu-\sigma^2/2\) and \(\sigma\), regardless of the original parameters of bm. The observation times are the same as those of bm. The generation method depends on that of bm (sequential, bridge sampling, PCA, etc.).

Member Function Documentation

◆ setParams()

void setParams ( double  s0,
double  mu,
double  sigma 
)

Sets the parameters \(S(t_0) = \mathtt{s0}\), \(\mu= \mathtt{mu}\) and \(\sigma= \mathtt{sigma}\) of the process.

Warning: This method will recompute some quantities stored internally, which may be slow if called repeatedly.


The documentation for this class was generated from the following file: