|
SSJ
3.3.1
Stochastic Simulation in Java
|
This class extends the class ContinuousDistribution for the Weibull distribution [99] (page 628) with shape parameter \(\alpha> 0\), location parameter \(\delta\), and scale parameter \(\lambda> 0\). More...
Public Member Functions | |
| WeibullDist (double alpha) | |
Constructs a WeibullDist object with parameters \(\alpha\) = alpha, \(\lambda\) = 1, and \(\delta\) = 0. | |
| WeibullDist (double alpha, double lambda, double delta) | |
Constructs a WeibullDist object with parameters \(\alpha=\) alpha, \(\lambda\) = lambda, and \(\delta\) = delta. | |
| double | density (double x) |
| double | cdf (double x) |
| Returns the distribution function \(F(x)\). More... | |
| double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
| double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
| double | getMean () |
| Returns the mean of the distribution function. | |
| double | getVariance () |
| Returns the variance of the distribution function. | |
| double | getStandardDeviation () |
| Returns the standard deviation of the distribution function. | |
| double | getAlpha () |
| Returns the parameter \(\alpha\). | |
| double | getLambda () |
| Returns the parameter \(\lambda\). | |
| double | getDelta () |
| Returns the parameter \(\delta\). | |
| void | setParams (double alpha, double lambda, double delta) |
| Sets the parameters \(\alpha\), \(\lambda\) and \(\delta\) for this object. | |
| double [] | getParams () |
| Return a table containing the parameters of the current distribution. More... | |
| String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
| abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More... | |
| double | barF (double x) |
| Returns the complementary distribution function. More... | |
| double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
| double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
| double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
| double | getMean () |
| Returns the mean. More... | |
| double | getVariance () |
| Returns the variance. More... | |
| double | getStandardDeviation () |
| Returns the standard deviation. More... | |
| double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
| double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
| void | setXinf (double xa) |
Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
| void | setXsup (double xb) |
Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
| static double | density (double alpha, double lambda, double delta, double x) |
| Computes the density function. | |
| static double | density (double alpha, double x) |
Same as density (alpha, 1, 0, x). | |
| static double | cdf (double alpha, double lambda, double delta, double x) |
| Computes the distribution function. | |
| static double | cdf (double alpha, double x) |
Same as cdf (alpha, 1, 0, x). | |
| static double | barF (double alpha, double lambda, double delta, double x) |
| Computes the complementary distribution function. | |
| static double | barF (double alpha, double x) |
Same as barF (alpha, 1, 0, x). | |
| static double | inverseF (double alpha, double lambda, double delta, double u) |
| Computes the inverse of the distribution function. | |
| static double | inverseF (double alpha, double x) |
Same as inverseF (alpha, 1, 0, x). | |
| static double [] | getMLE (double[] x, int n) |
| Estimates the parameters \((\alpha, \lambda)\) of the Weibull distribution, assuming that \(\delta= 0\), using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
| static WeibullDist | getInstanceFromMLE (double[] x, int n) |
| Creates a new instance of a Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta= 0\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
| static double | getMean (double alpha, double lambda, double delta) |
| Computes and returns the mean \(E[X] = \delta+ \Gamma(1 + 1/\alpha)/\lambda\) of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\). More... | |
| static double | getVariance (double alpha, double lambda, double delta) |
| Computes and returns the variance \(\mbox{Var}[X] = | \Gamma(2/\alpha+ 1) - \Gamma^2(1/\alpha+ 1) | /\lambda^2\) of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\). More... | |
| static double | getStandardDeviation (double alpha, double lambda, double delta) |
| Computes and returns the standard deviation of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\). More... | |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
| int | decPrec = 15 |
Protected Attributes inherited from ContinuousDistribution | |
| double | supportA = Double.NEGATIVE_INFINITY |
| double | supportB = Double.POSITIVE_INFINITY |
Static Protected Attributes inherited from ContinuousDistribution | |
| static final double | XBIG = 100.0 |
| static final double | XBIGM = 1000.0 |
| static final double [] | EPSARRAY |
This class extends the class ContinuousDistribution for the Weibull distribution [99] (page 628) with shape parameter \(\alpha> 0\), location parameter \(\delta\), and scale parameter \(\lambda> 0\).
\[ f(x) = \alpha\lambda^{\alpha}(x-\delta)^{\alpha-1} e^{-(\lambda(x-\delta))^{\alpha}} \qquad\mbox{for }x>\delta, \tag{fweibull} \]
\[ F(x) = 1 - e^{-(\lambda(x - \delta))^{\alpha}} \qquad\mbox{for }x>\delta, \tag{Fweibull} \]
and the inverse distribution function is
\[ F^{-1}(u) = (-\ln(1-u))^{1/\alpha}/\lambda+ \delta\qquad\mbox{for } 0 \le u < 1. \]
| double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
| x | value at which the complementary distribution function is evaluated |
x Implements Distribution.
| double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
| x | value at which the distribution function is evaluated |
x Implements Distribution.
|
static |
Creates a new instance of a Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta= 0\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
| x | the list of observations to use to evaluate parameters |
| n | the number of observations to use to evaluate parameters |
|
static |
Computes and returns the mean \(E[X] = \delta+ \Gamma(1 + 1/\alpha)/\lambda\) of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\).
|
static |
Estimates the parameters \((\alpha, \lambda)\) of the Weibull distribution, assuming that \(\delta= 0\), using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
The estimates are returned in a two-element array, in regular order: [ \(\alpha\), \(\lambda\)]. The maximum likelihood estimators are the values \((\hat{\alpha}\), \(\hat{\lambda})\) that satisfy the equations
\begin{align*} \frac{\sum_{i=1}^n x_i^{\hat{\alpha}} \ln(x_i)}{\sum_{i=1}^n x_i^{\hat{\alpha}}} - \frac{1}{\hat{\alpha}} & = \frac{\sum_{i=1}^n \ln(x_i)}{n} \\ \hat{\lambda} & = \left( \frac{n}{\sum_{i=1}^n x_i^{\hat{\alpha}}} \right)^{1/\hat{\alpha}} \end{align*}
See [118] (page 303).
| x | the list of observations to use to evaluate parameters |
| n | the number of observations to use to evaluate parameters |
| double [] getParams | ( | ) |
Return a table containing the parameters of the current distribution.
This table is put in regular order: [ \(\alpha\), \(\lambda\), \(\delta\)].
Implements Distribution.
|
static |
Computes and returns the standard deviation of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\).
|
static |
Computes and returns the variance \(\mbox{Var}[X] = | \Gamma(2/\alpha+ 1) - \Gamma^2(1/\alpha+ 1) | /\lambda^2\) of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\).
| double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
| u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u Implements Distribution.
1.8.14