SSJ  3.3.1
Stochastic Simulation in Java
Classes | Public Member Functions | Static Public Member Functions | List of all members
WeibullDist Class Reference

This class extends the class ContinuousDistribution for the Weibull distribution [99]  (page 628) with shape parameter \(\alpha> 0\), location parameter \(\delta\), and scale parameter \(\lambda> 0\). More...

Inheritance diagram for WeibullDist:
[legend]
Collaboration diagram for WeibullDist:
[legend]

Public Member Functions

 WeibullDist (double alpha)
 Constructs a WeibullDist object with parameters \(\alpha\) = alpha, \(\lambda\) = 1, and \(\delta\) = 0.
 
 WeibullDist (double alpha, double lambda, double delta)
 Constructs a WeibullDist object with parameters \(\alpha=\) alpha, \(\lambda\) = lambda, and \(\delta\) = delta.
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
double getAlpha ()
 Returns the parameter \(\alpha\).
 
double getLambda ()
 Returns the parameter \(\lambda\).
 
double getDelta ()
 Returns the parameter \(\delta\).
 
void setParams (double alpha, double lambda, double delta)
 Sets the parameters \(\alpha\), \(\lambda\) and \(\delta\) for this object.
 
double [] getParams ()
 Return a table containing the parameters of the current distribution. More...
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (double alpha, double lambda, double delta, double x)
 Computes the density function.
 
static double density (double alpha, double x)
 Same as density (alpha, 1, 0, x).
 
static double cdf (double alpha, double lambda, double delta, double x)
 Computes the distribution function.
 
static double cdf (double alpha, double x)
 Same as cdf (alpha, 1, 0, x).
 
static double barF (double alpha, double lambda, double delta, double x)
 Computes the complementary distribution function.
 
static double barF (double alpha, double x)
 Same as barF (alpha, 1, 0, x).
 
static double inverseF (double alpha, double lambda, double delta, double u)
 Computes the inverse of the distribution function.
 
static double inverseF (double alpha, double x)
 Same as inverseF (alpha, 1, 0, x).
 
static double [] getMLE (double[] x, int n)
 Estimates the parameters \((\alpha, \lambda)\) of the Weibull distribution, assuming that \(\delta= 0\), using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
 
static WeibullDist getInstanceFromMLE (double[] x, int n)
 Creates a new instance of a Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta= 0\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
 
static double getMean (double alpha, double lambda, double delta)
 Computes and returns the mean \(E[X] = \delta+ \Gamma(1 + 1/\alpha)/\lambda\) of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\). More...
 
static double getVariance (double alpha, double lambda, double delta)
 Computes and returns the variance \(\mbox{Var}[X] = | \Gamma(2/\alpha+ 1) - \Gamma^2(1/\alpha+ 1) | /\lambda^2\) of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\). More...
 
static double getStandardDeviation (double alpha, double lambda, double delta)
 Computes and returns the standard deviation of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\). More...
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

This class extends the class ContinuousDistribution for the Weibull distribution [99]  (page 628) with shape parameter \(\alpha> 0\), location parameter \(\delta\), and scale parameter \(\lambda> 0\).

The density function is

\[ f(x) = \alpha\lambda^{\alpha}(x-\delta)^{\alpha-1} e^{-(\lambda(x-\delta))^{\alpha}} \qquad\mbox{for }x>\delta, \tag{fweibull} \]

the distribution function is

\[ F(x) = 1 - e^{-(\lambda(x - \delta))^{\alpha}} \qquad\mbox{for }x>\delta, \tag{Fweibull} \]

and the inverse distribution function is

\[ F^{-1}(u) = (-\ln(1-u))^{1/\alpha}/\lambda+ \delta\qquad\mbox{for } 0 \le u < 1. \]

Member Function Documentation

◆ barF()

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ cdf()

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ getInstanceFromMLE()

static WeibullDist getInstanceFromMLE ( double []  x,
int  n 
)
static

Creates a new instance of a Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta= 0\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).

Parameters
xthe list of observations to use to evaluate parameters
nthe number of observations to use to evaluate parameters

◆ getMean()

static double getMean ( double  alpha,
double  lambda,
double  delta 
)
static

Computes and returns the mean \(E[X] = \delta+ \Gamma(1 + 1/\alpha)/\lambda\) of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\).

Returns
the mean of the Weibull distribution \(E[X] = \delta+ \Gamma(1 + 1/\alpha) / \lambda\)

◆ getMLE()

static double [] getMLE ( double []  x,
int  n 
)
static

Estimates the parameters \((\alpha, \lambda)\) of the Weibull distribution, assuming that \(\delta= 0\), using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).

The estimates are returned in a two-element array, in regular order: [ \(\alpha\), \(\lambda\)]. The maximum likelihood estimators are the values \((\hat{\alpha}\), \(\hat{\lambda})\) that satisfy the equations

\begin{align*} \frac{\sum_{i=1}^n x_i^{\hat{\alpha}} \ln(x_i)}{\sum_{i=1}^n x_i^{\hat{\alpha}}} - \frac{1}{\hat{\alpha}} & = \frac{\sum_{i=1}^n \ln(x_i)}{n} \\ \hat{\lambda} & = \left( \frac{n}{\sum_{i=1}^n x_i^{\hat{\alpha}}} \right)^{1/\hat{\alpha}} \end{align*}

See [118]  (page 303).

Parameters
xthe list of observations to use to evaluate parameters
nthe number of observations to use to evaluate parameters
Returns
returns the parameter [ \(\hat{\alpha}\), \(\hat{\lambda}\), \(\hat{\delta}\) = 0]

◆ getParams()

double [] getParams ( )

Return a table containing the parameters of the current distribution.

This table is put in regular order: [ \(\alpha\), \(\lambda\), \(\delta\)].

Implements Distribution.

◆ getStandardDeviation()

static double getStandardDeviation ( double  alpha,
double  lambda,
double  delta 
)
static

Computes and returns the standard deviation of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\).

Returns
the standard deviation of the Weibull distribution

◆ getVariance()

static double getVariance ( double  alpha,
double  lambda,
double  delta 
)
static

Computes and returns the variance \(\mbox{Var}[X] = | \Gamma(2/\alpha+ 1) - \Gamma^2(1/\alpha+ 1) | /\lambda^2\) of the Weibull distribution with parameters \(\alpha\), \(\lambda\) and \(\delta\).

Returns
the variance of the Weibull distribution \(\mbox{Var}[X] = 1 / \lambda^2 | \Gamma(2/\alpha+ 1) - \Gamma^2(1/\alpha+ 1) |\)

◆ inverseF()

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.


The documentation for this class was generated from the following file: