SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class ContinuousDistribution for the uniform distribution [100] (page 276) over the interval \([a,b]\). More...
Public Member Functions | |
UniformDist () | |
Constructs a uniform distribution over the interval \((a,b) = (0,1)\). | |
UniformDist (double a, double b) | |
Constructs a uniform distribution over the interval \((a,b)\). | |
double | density (double x) |
double | cdf (double x) |
Returns the distribution function \(F(x)\). More... | |
double | barF (double x) |
Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
double | getA () |
Returns the parameter \(a\). | |
double | getB () |
Returns the parameter \(b\). | |
void | setParams (double a, double b) |
Sets the parameters \(a\) and \(b\) for this object. | |
double [] | getParams () |
Return a table containing the parameters of the current distribution. More... | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
abstract double | density (double x) |
Returns \(f(x)\), the density evaluated at \(x\). More... | |
double | barF (double x) |
Returns the complementary distribution function. More... | |
double | inverseBrent (double a, double b, double u, double tol) |
Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
double | inverseBisection (double u) |
Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
double | getMean () |
Returns the mean. More... | |
double | getVariance () |
Returns the variance. More... | |
double | getStandardDeviation () |
Returns the standard deviation. More... | |
double | getXinf () |
Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
double | getXsup () |
Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXinf (double xa) |
Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXsup (double xb) |
Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
static double | density (double a, double b, double x) |
Computes the uniform density function \(f(x)\) in ( funiform ). | |
static double | cdf (double a, double b, double x) |
Computes the uniform distribution function as in ( cdfuniform ). | |
static double | barF (double a, double b, double x) |
Computes the uniform complementary distribution function \(\bar{F}(x)\). | |
static double | inverseF (double a, double b, double u) |
Computes the inverse of the uniform distribution function ( cdinvfuniform ). | |
static double [] | getMLE (double[] x, int n) |
Estimates the parameter \((a, b)\) of the uniform distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static UniformDist | getInstanceFromMLE (double[] x, int n) |
Creates a new instance of a uniform distribution with parameters \(a\) and \(b\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static double | getMean (double a, double b) |
Computes and returns the mean \(E[X] = (a + b)/2\) of the uniform distribution with parameters \(a\) and \(b\). More... | |
static double | getVariance (double a, double b) |
Computes and returns the variance \(\mbox{Var}[X] = (b - a)^2/12\) of the uniform distribution with parameters \(a\) and \(b\). More... | |
static double | getStandardDeviation (double a, double b) |
Computes and returns the standard deviation of the uniform distribution with parameters \(a\) and \(b\). More... | |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
int | decPrec = 15 |
Protected Attributes inherited from ContinuousDistribution | |
double | supportA = Double.NEGATIVE_INFINITY |
double | supportB = Double.POSITIVE_INFINITY |
Static Protected Attributes inherited from ContinuousDistribution | |
static final double | XBIG = 100.0 |
static final double | XBIGM = 1000.0 |
static final double [] | EPSARRAY |
Extends the class ContinuousDistribution for the uniform distribution [100] (page 276) over the interval \([a,b]\).
\[ f(x) = 1/(b-a) \qquad\mbox{ for } a\le x\le b \tag{funiform} \]
and 0 elsewhere. The distribution function is
\[ F(x) = (x-a)/(b-a) \qquad\mbox{ for } a\le x\le b \tag{cdfuniform} \]
\[ F^{-1}(u) = a + (b - a)u \qquad\mbox{for }0 \le u \le1. \tag{cdinvfuniform} \]
double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
x | value at which the complementary distribution function is evaluated |
x
Implements Distribution.
double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
x | value at which the distribution function is evaluated |
x
Implements Distribution.
|
static |
Creates a new instance of a uniform distribution with parameters \(a\) and \(b\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
|
static |
Computes and returns the mean \(E[X] = (a + b)/2\) of the uniform distribution with parameters \(a\) and \(b\).
|
static |
Estimates the parameter \((a, b)\) of the uniform distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
The estimates are returned in a two-element array, in regular order: [ \(a\), \(b\)]. The maximum likelihood estimators are the values \((\hat{a}\), \(\hat{b})\) that satisfy the equations
\begin{align*} \hat{a} & = \min_i \{x_i\} \\ \hat{b} & = \max_i \{x_i\}. \end{align*}
See [118] (page 300).
x | the list of observations used to evaluate parameters |
n | the number of observations used to evaluate parameters |
double [] getParams | ( | ) |
Return a table containing the parameters of the current distribution.
This table is put in regular order: [ \(a\), \(b\)].
Implements Distribution.
|
static |
Computes and returns the standard deviation of the uniform distribution with parameters \(a\) and \(b\).
|
static |
Computes and returns the variance \(\mbox{Var}[X] = (b - a)^2/12\) of the uniform distribution with parameters \(a\) and \(b\).
double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u
Implements Distribution.