Extends the class ContinuousDistribution for the Student \(t\)-distribution [100] (page 362) with \(n\) degrees of freedom, where \(n\) is a positive integer.
More...
|
| StudentDist (int n) |
| Constructs a StudentDist object with n degrees of freedom.
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
int | getN () |
| Returns the parameter \(n\) associated with this object.
|
|
void | setN (int n) |
| Sets the parameter \(n\) associated with this object.
|
|
double [] | getParams () |
| Return a table containing the parameter of the current distribution.
|
|
String | toString () |
| Returns a String containing information about the current distribution.
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (int n, double x) |
| Computes the density function ( fstudent ) of a Student \(t\)-distribution with \(n\) degrees of freedom.
|
|
static double | cdf (int n, double x) |
| Computes the Student \(t\)-distribution function \(u=F(x)\) with \(n\) degrees of freedom. More...
|
|
static double | cdf2 (int n, int d, double x) |
| Same as cdf(n, x).
|
|
static double | barF (int n, double x) |
| Computes the complementary distribution function \(v = \bar{F}(x)\) with \(n\) degrees of freedom. More...
|
|
static double | inverseF (int n, double u) |
| Returns the inverse \(x = F^{-1}(u)\) of Student \(t\)-distribution function with \(n\) degrees of freedom. More...
|
|
static double [] | getMLE (double[] x, int m) |
| Estimates the parameter \(n\) of the Student \(t\)-distribution using the maximum likelihood method, from the \(m\) observations \(x[i]\), \(i = 0, 1,…, m-1\). More...
|
|
static StudentDist | getInstanceFromMLE (double[] x, int m) |
| Creates a new instance of a Student \(t\)-distribution with parameter \(n\) estimated using the maximum likelihood method based on the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\). More...
|
|
static double | getMean (int n) |
| Returns the mean \(E[X] = 0\) of the Student \(t\)-distribution with parameter \(n\). More...
|
|
static double | getVariance (int n) |
| Computes and returns the variance \(\mbox{Var}[X] = n/(n - 2)\) of the Student \(t\)-distribution with parameter \(n\). More...
|
|
static double | getStandardDeviation (int n) |
| Computes and returns the standard deviation of the Student \(t\)-distribution with parameter \(n\). More...
|
|
|
int | n |
|
double | supportA = Double.NEGATIVE_INFINITY |
|
double | supportB = Double.POSITIVE_INFINITY |
|
|
int | decPrec = 15 |
|
static final double | XBIG = 100.0 |
|
static final double | XBIGM = 1000.0 |
|
static final double [] | EPSARRAY |
|
Extends the class ContinuousDistribution for the Student \(t\)-distribution [100] (page 362) with \(n\) degrees of freedom, where \(n\) is a positive integer.
Its density is
\[ f (x) = \frac{\Gamma\left((n + 1)/2 \right)}{\Gamma(n/2) \sqrt{\pi n}} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2} \qquad\mbox{for } -\infty< x < \infty, \tag{fstudent} \]
where \(\Gamma(x)\) is the gamma function defined in ( Gamma ).
◆ barF() [1/2]
Returns \(\bar{F}(x) = 1 - F(x)\).
- Parameters
-
x | value at which the complementary distribution function is evaluated |
- Returns
- complementary distribution function evaluated at
x
Implements Distribution.
◆ barF() [2/2]
static double barF |
( |
int |
n, |
|
|
double |
x |
|
) |
| |
|
static |
Computes the complementary distribution function \(v = \bar{F}(x)\) with \(n\) degrees of freedom.
Gives 13 decimal digits of precision for \(n \le10^5\). For \(n > 10^5\), gives at least 6 decimal digits of precision everywhere, and at least 9 decimal digits of precision for all \(v > 10^{-15}\).
◆ cdf() [1/2]
Returns the distribution function \(F(x)\).
- Parameters
-
x | value at which the distribution function is evaluated |
- Returns
- distribution function evaluated at
x
Implements Distribution.
◆ cdf() [2/2]
static double cdf |
( |
int |
n, |
|
|
double |
x |
|
) |
| |
|
static |
Computes the Student \(t\)-distribution function \(u=F(x)\) with \(n\) degrees of freedom.
Gives 13 decimal digits of precision for \(n \le10^5\). For \(n > 10^5\), gives at least 6 decimal digits of precision everywhere, and at least 9 decimal digits of precision for all \(u > 10^{-15}\).
◆ getInstanceFromMLE()
static StudentDist getInstanceFromMLE |
( |
double [] |
x, |
|
|
int |
m |
|
) |
| |
|
static |
Creates a new instance of a Student \(t\)-distribution with parameter \(n\) estimated using the maximum likelihood method based on the \(m\) observations \(x[i]\), \(i = 0, 1, …, m-1\).
- Parameters
-
x | the list of observations to use to evaluate parameters |
m | the number of observations to use to evaluate parameters |
◆ getMean()
static double getMean |
( |
int |
n | ) |
|
|
static |
Returns the mean \(E[X] = 0\) of the Student \(t\)-distribution with parameter \(n\).
- Returns
- the mean of the Student \(t\)-distribution \(E[X] = 0\)
◆ getMLE()
static double [] getMLE |
( |
double [] |
x, |
|
|
int |
m |
|
) |
| |
|
static |
Estimates the parameter \(n\) of the Student \(t\)-distribution using the maximum likelihood method, from the \(m\) observations \(x[i]\), \(i = 0, 1,…, m-1\).
The estimate is returned in a one-element array.
- Parameters
-
x | the list of observations to use to evaluate parameters |
m | the number of observations to use to evaluate parameters |
- Returns
- returns the parameter [ \(\hat{n}\)]
◆ getStandardDeviation()
static double getStandardDeviation |
( |
int |
n | ) |
|
|
static |
Computes and returns the standard deviation of the Student \(t\)-distribution with parameter \(n\).
- Returns
- the standard deviation of the Student \(t\)-distribution
◆ getVariance()
static double getVariance |
( |
int |
n | ) |
|
|
static |
Computes and returns the variance \(\mbox{Var}[X] = n/(n - 2)\) of the Student \(t\)-distribution with parameter \(n\).
- Returns
- the variance of the Student \(t\)-distribution \(\mbox{Var}[X] = n / (n - 2)\)
◆ inverseF() [1/2]
double inverseF |
( |
double |
u | ) |
|
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
- Parameters
-
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
- Returns
- the inverse distribution function evaluated at
u
Implements Distribution.
◆ inverseF() [2/2]
static double inverseF |
( |
int |
n, |
|
|
double |
u |
|
) |
| |
|
static |
Returns the inverse \(x = F^{-1}(u)\) of Student \(t\)-distribution function with \(n\) degrees of freedom.
Gives 13 decimal digits of precision for \(n \le10^5\), and at least 9 decimal digits of precision for \(n > 10^5\).
The documentation for this class was generated from the following file: