|
| RayleighDist (double beta) |
| Constructs a RayleighDist object with parameters \(a = 0\) and \(\beta\) = beta .
|
|
| RayleighDist (double a, double beta) |
| Constructs a RayleighDist object with parameters \(a =\) a , and \(\beta\) = beta .
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
double | getA () |
| Returns the parameter \(a\). More...
|
|
double | getSigma () |
| Returns the parameter \(\beta\). More...
|
|
void | setParams (double a, double beta) |
| Sets the parameters \(a\) and \(\beta\) for this object. More...
|
|
double [] | getParams () |
| Return an array containing the parameters of the current distribution in the order: [ \(a\), \(\beta\)]. More...
|
|
String | toString () |
| Returns a String containing information about the current distribution. More...
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (double a, double beta, double x) |
| Computes the density function ( frayleigh ). More...
|
|
static double | density (double beta, double x) |
| Same as density (0, beta, x) . More...
|
|
static double | cdf (double a, double beta, double x) |
| Computes the distribution function ( Frayleigh ). More...
|
|
static double | cdf (double beta, double x) |
| Same as cdf (0, beta, x) . More...
|
|
static double | barF (double a, double beta, double x) |
| Computes the complementary distribution function. More...
|
|
static double | barF (double beta, double x) |
| Same as barF (0, beta, x) . More...
|
|
static double | inverseF (double a, double beta, double u) |
| Computes the inverse of the distribution function ( Invrayleigh ). More...
|
|
static double | inverseF (double beta, double u) |
| Same as inverseF (0, beta, u) . More...
|
|
static double [] | getMLE (double[] x, int n, double a) |
| Estimates the parameter \(\beta\) of the Rayleigh distribution using the maximum likelihood method, assuming that \(a\) is known, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
|
|
static RayleighDist | getInstanceFromMLE (double[] x, int n, double a) |
| Creates a new instance of a Rayleigh distribution with parameters \(a\) and \(\hat{\beta}\). More...
|
|
static double | getMean (double a, double beta) |
| Returns the mean \(a + \beta\sqrt{\pi/2}\) of the Rayleigh distribution with parameters \(a\) and \(\beta\). More...
|
|
static double | getVariance (double beta) |
| Returns the variance of the Rayleigh distribution with parameter \(\beta\). More...
|
|
static double | getStandardDeviation (double beta) |
| Returns the standard deviation \(\beta\sqrt{2 - \pi/2}\) of the Rayleigh distribution with parameter \(\beta\). More...
|
|
This class extends the class ContinuousDistribution for the Rayleigh distribution [57] with location parameter \(a\), and scale parameter \(\beta> 0\).
The density function is
\[ f(x) = \frac{(x-a)}{\beta^2} e^{-(x-a)^2/(2\beta^2)} \qquad\mbox{for } x \ge a, \tag{frayleigh} \]
and \(f(x) = 0\) for \(x < a\). The distribution function is
\[ F(x) = 1 - e^{-(x - a)^2/(2\beta^2)} \qquad\mbox{for } x \ge a, \tag{Frayleigh} \]
and the inverse distribution function is
\[ F^{-1}(u) = x = a + \beta\sqrt{-2\ln(1-u)} \qquad\mbox{for } 0 \le u \le1. \tag{Invrayleigh} \]
static double [] getMLE |
( |
double [] |
x, |
|
|
int |
n, |
|
|
double |
a |
|
) |
| |
|
static |
Estimates the parameter \(\beta\) of the Rayleigh distribution using the maximum likelihood method, assuming that \(a\) is known, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
The estimate is returned in a one-element array: [ \(\hat{\beta}\)]. The maximum likelihood estimator is the value \(\hat{\beta}\) that satisfies the equation
\[ \hat{\beta} = \sqrt{\frac{1}{2n}\sum_{i=1}^n x_i^2} \]
- Parameters
-
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
a | the location parameter |
- Returns
- returns the parameter [ \(\hat{\beta}\)]