|
| PowerDist (double a, double b, double c) |
| Constructs a PowerDist object with parameters \(a =\) a , \(b =\) b and \(c =\) c .
|
|
| PowerDist (double b, double c) |
| Constructs a PowerDist object with parameters \(a = 0\), \(b =\) b and \(c =\) c .
|
|
| PowerDist (double c) |
| Constructs a PowerDist object with parameters \(a = 0\), \(b =1\) and \(c =\) c .
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
double | getA () |
| Returns the parameter \(a\). More...
|
|
double | getB () |
| Returns the parameter \(b\). More...
|
|
double | getC () |
| Returns the parameter \(c\). More...
|
|
void | setParams (double a, double b, double c) |
| Sets the parameters \(a\), \(b\) and \(c\) for this object. More...
|
|
double [] | getParams () |
| Return a table containing the parameters of the current distribution. More...
|
|
String | toString () |
| Returns a String containing information about the current distribution. More...
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (double a, double b, double c, double x) |
| Computes the density function ( fpower ). More...
|
|
static double | cdf (double a, double b, double c, double x) |
| Computes the distribution function ( Fpower ). More...
|
|
static double | barF (double a, double b, double c, double x) |
| Computes the complementary distribution function. More...
|
|
static double | inverseF (double a, double b, double c, double u) |
| Computes the inverse of the distribution function. More...
|
|
static double [] | getMLE (double[] x, int n, double a, double b) |
| Estimates the parameter \(c\) of the power distribution from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\), using the maximum likelihood method and assuming that \(a\) and \(b\) are known. More...
|
|
static PowerDist | getInstanceFromMLE (double[] x, int n, double a, double b) |
| Creates a new instance of a power distribution with parameters \(a\) and \(b\), with \(c\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, …, n-1\). More...
|
|
static double | getMean (double a, double b, double c) |
| Returns the mean \(a + (b-a)c/(c+1)\) of the power distribution with parameters \(a\), \(b\) and \(c\). More...
|
|
static double | getVariance (double a, double b, double c) |
| Computes and returns the variance \((b-a)^2 c / [(c+1)^2(c+2)]\) of the power distribution with parameters \(a\), \(b\) and \(c\). More...
|
|
static double | getStandardDeviation (double a, double b, double c) |
| Computes and returns the standard deviation of the power distribution with parameters \(a\), \(b\) and \(c\). More...
|
|
Extends the class ContinuousDistribution for the power distribution [57] (page 161) with shape parameter \(c > 0\), over the interval \([a,b]\), where \(a < b\).
This distribution has density
\[ f(x) = \frac{c(x-a)^{c - 1}}{(b - a)^c}, \qquad\mbox{for } a \le x \le b, \tag{fpower} \]
and \(f(x) = 0\) elsewhere. Its distribution function is
\[ F(x) = \frac{(x - a)^c}{(b - a)^c}, \qquad\mbox{for } a \le x \le b, \tag{Fpower} \]
with \(F(x) = 0\) for \(x \le a\) and \(F(x) = 1\) for \(x \ge b\).
static double [] getMLE |
( |
double [] |
x, |
|
|
int |
n, |
|
|
double |
a, |
|
|
double |
b |
|
) |
| |
|
static |
Estimates the parameter \(c\) of the power distribution from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\), using the maximum likelihood method and assuming that \(a\) and \(b\) are known.
The estimate is returned in a one-element array: [ \(c\)]. The maximum likelihood estimator is the value \(\hat{c}\) that satisfies the equation
\begin{align*} \frac{1}{\hat{c}} = -\frac{1}{n} \sum_{i=1}^n \ln\left(\frac{x_i - a}{b - a} \right) \end{align*}
- Parameters
-
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
a | left limit of interval |
b | right limit of interval |
- Returns
- returns the shape parameter [ \(\hat{c}\)]