SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class ContinuousDistribution for the Pearson type VI distribution with shape parameters \(\alpha_1 > 0\) and \(\alpha_2 > 0\), and scale parameter \(\beta> 0\). More...
Public Member Functions | |
Pearson6Dist (double alpha1, double alpha2, double beta) | |
Constructs a Pearson6Dist object with parameters \(\alpha_1\) = alpha1 , \(\alpha_2\) = alpha2 and \(\beta\) = beta . | |
double | density (double x) |
double | cdf (double x) |
Returns the distribution function \(F(x)\). More... | |
double | barF (double x) |
Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
double | getAlpha1 () |
Returns the \(\alpha_1\) parameter of this object. | |
double | getAlpha2 () |
Returns the \(\alpha_2\) parameter of this object. | |
double | getBeta () |
Returns the \(\beta\) parameter of this object. | |
void | setParam (double alpha1, double alpha2, double beta) |
Sets the parameters \(\alpha_1\), \(\alpha_2\) and \(\beta\) of this object. | |
double [] | getParams () |
Return a table containing the parameters of the current distribution. More... | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
abstract double | density (double x) |
Returns \(f(x)\), the density evaluated at \(x\). More... | |
double | barF (double x) |
Returns the complementary distribution function. More... | |
double | inverseBrent (double a, double b, double u, double tol) |
Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
double | inverseBisection (double u) |
Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
double | getMean () |
Returns the mean. More... | |
double | getVariance () |
Returns the variance. More... | |
double | getStandardDeviation () |
Returns the standard deviation. More... | |
double | getXinf () |
Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
double | getXsup () |
Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXinf (double xa) |
Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXsup (double xb) |
Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
static double | density (double alpha1, double alpha2, double beta, double x) |
Computes the density function of a Pearson VI distribution with shape parameters \(\alpha_1\) and \(\alpha_2\), and scale parameter \(\beta\). | |
static double | cdf (double alpha1, double alpha2, double beta, double x) |
Computes the distribution function of a Pearson VI distribution with shape parameters \(\alpha_1\) and \(\alpha_2\), and scale parameter \(\beta\). | |
static double | barF (double alpha1, double alpha2, double beta, double x) |
Computes the complementary distribution function of a Pearson VI distribution with shape parameters \(\alpha_1\) and \(\alpha_2\), and scale parameter \(\beta\). | |
static double | inverseF (double alpha1, double alpha2, double beta, double u) |
Computes the inverse distribution function of a Pearson VI distribution with shape parameters \(\alpha_1\) and \(\alpha_2\), and scale parameter \(\beta\). | |
static double [] | getMLE (double[] x, int n) |
Estimates the parameters \((\alpha_1,\alpha_2,\beta)\) of the Pearson VI distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More... | |
static Pearson6Dist | getInstanceFromMLE (double[] x, int n) |
Creates a new instance of a Pearson VI distribution with parameters \(\alpha_1\), \(\alpha_2\) and \(\beta\), estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static double | getMean (double alpha1, double alpha2, double beta) |
Computes and returns the mean \(E[X] = (\beta\alpha_1) / (\alpha_2 - 1)\) of a Pearson VI distribution with shape parameters \(\alpha_1\) and \(\alpha_2\), and scale parameter \(\beta\). | |
static double | getVariance (double alpha1, double alpha2, double beta) |
Computes and returns the variance \(\mbox{Var}[X] = [\beta^2 \alpha_1 (\alpha_1 + \alpha_2 - 1)] / [(\alpha_2 - 1)^2(\alpha_2 - 2)]\) of a Pearson VI distribution with shape parameters \(\alpha_1\) and \(\alpha_2\), and scale parameter \(\beta\). | |
static double | getStandardDeviation (double alpha1, double alpha2, double beta) |
Computes and returns the standard deviation of a Pearson VI distribution with shape parameters \(\alpha_1\) and \(\alpha_2\), and scale parameter \(\beta\). | |
Protected Attributes | |
double | alpha1 |
double | alpha2 |
double | beta |
double | logBeta |
Protected Attributes inherited from ContinuousDistribution | |
double | supportA = Double.NEGATIVE_INFINITY |
double | supportB = Double.POSITIVE_INFINITY |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
int | decPrec = 15 |
Static Protected Attributes inherited from ContinuousDistribution | |
static final double | XBIG = 100.0 |
static final double | XBIGM = 1000.0 |
static final double [] | EPSARRAY |
Extends the class ContinuousDistribution for the Pearson type VI distribution with shape parameters \(\alpha_1 > 0\) and \(\alpha_2 > 0\), and scale parameter \(\beta> 0\).
The density function is given by
\[ f(x) =\left\{\begin{array}{ll} \displaystyle\frac{\left(x/{\beta}\right)^{\alpha_1 - 1}}{\beta\mathcal{B}(\alpha_1, \alpha_2)(1 + x/{\beta})^{\alpha_1 + \alpha_2}} & \quad\mbox{for } x > 0, \\ 0 & \quad\mbox{otherwise,} \end{array} \right. \tag{fpearson6} \]
where \(\mathcal{B}\) is the beta function. The distribution function is given by
\[ F(x) = F_B\left(\frac{x}{x + \beta}\right) \qquad\mbox{for } x > 0, \tag{Fpearson6} \]
and \(F(x) = 0\) otherwise, where \(F_B(x)\) is the distribution function of a beta distribution with shape parameters \(\alpha_1\) and \(\alpha_2\).
double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
x | value at which the complementary distribution function is evaluated |
x
Implements Distribution.
double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
x | value at which the distribution function is evaluated |
x
Implements Distribution.
|
static |
Creates a new instance of a Pearson VI distribution with parameters \(\alpha_1\), \(\alpha_2\) and \(\beta\), estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
|
static |
Estimates the parameters \((\alpha_1,\alpha_2,\beta)\) of the Pearson VI distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).
The estimates are returned in a three-element array, in regular order: [ \(\alpha_1, \alpha_2\), \(\beta\)]. The estimate of the parameters is given by maximizing numerically the log-likelihood function, using the Uncmin package [211], [233] .
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
double [] getParams | ( | ) |
Return a table containing the parameters of the current distribution.
This table is put in regular order: [ \(\alpha_1\), \(\alpha_2\), \(\beta\)].
Implements Distribution.
double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u
Implements Distribution.