|
| NakagamiDist (double a, double lambda, double c) |
| Constructs a NakagamiDist object with parameters \(a =\) a , \(\lambda=\) lambda and \(c =\) c .
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
double | getA () |
| Returns the location parameter \(a\) of this object. More...
|
|
double | getLambda () |
| Returns the scale parameter \(\lambda\) of this object. More...
|
|
double | getC () |
| Returns the shape parameter \(c\) of this object. More...
|
|
void | setParams (double a, double lambda, double c) |
| Sets the parameters \(a\), \(\lambda\) and \(c\) of this object. More...
|
|
double [] | getParams () |
| Return a table containing the parameters of the current distribution. More...
|
|
String | toString () |
| Returns a String containing information about the current distribution. More...
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (double a, double lambda, double c, double x) |
| Computes the density function of the Nakagami distribution. More...
|
|
static double | cdf (double a, double lambda, double c, double x) |
| Computes the distribution function. More...
|
|
static double | barF (double a, double lambda, double c, double x) |
| Computes the complementary distribution function. More...
|
|
static double | inverseF (double a, double lambda, double c, double u) |
| Computes the inverse of the distribution function. More...
|
|
static double | getMean (double a, double lambda, double c) |
| Computes and returns the mean
\[ E[X] = a + \frac{1}{\sqrt{\lambda}}\; \frac{\Gamma(c+1/2)}{\Gamma(c)}. \]
. More...
|
|
static double | getVariance (double a, double lambda, double c) |
| Computes and returns the variance
\[ \mbox{Var}[X] = \frac{1}{\lambda} \left[c - \left(\frac{\Gamma(c+1/2)}{\Gamma(c)}\right)^2\right]. \]
. More...
|
|
static double | getStandardDeviation (double a, double lambda, double c) |
| Computes the standard deviation of the Nakagami distribution with parameters \(a\), \(\lambda\) and \(c\). More...
|
|
Extends the class ContinuousDistribution for the Nakagami distribution with location parameter \(a\), scale parameter \(\lambda> 0\) and shape parameter \(c > 0\).
The density is
\[ f(x) = \frac{2\lambda^c}{\Gamma(c)} (x-a)^{2c-1} e^{-{\lambda}(x-a)^2} \qquad\mbox{for } x > a,\tag{fnakagami} \]
\[ f(x) = 0 \qquad\mbox{ for } x \le a, \]
where \(\Gamma\) is the gamma function.