|
SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class ContinuousDistribution for the Log-Logistic distribution with shape parameter \(\alpha> 0\) and scale parameter \(\beta> 0\). More...
Public Member Functions | |
| LoglogisticDist (double alpha, double beta) | |
| Constructs a log-logistic distribution with parameters \(\alpha\) and \(\beta\). | |
| double | density (double x) |
| double | cdf (double x) |
| Returns the distribution function \(F(x)\). More... | |
| double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
| double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
| double | getMean () |
| Returns the mean of the distribution function. | |
| double | getVariance () |
| Returns the variance of the distribution function. | |
| double | getStandardDeviation () |
| Returns the standard deviation of the distribution function. | |
| double | getAlpha () |
| Return the parameter \(\alpha\) of this object. | |
| double | getBeta () |
| Returns the parameter \(\beta\) of this object. | |
| void | setParams (double alpha, double beta) |
| Sets the parameters \(\alpha\) and \(\beta\) of this object. | |
| double [] | getParams () |
| Return a table containing the parameters of the current distribution. More... | |
| String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
| abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More... | |
| double | barF (double x) |
| Returns the complementary distribution function. More... | |
| double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
| double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
| double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
| double | getMean () |
| Returns the mean. More... | |
| double | getVariance () |
| Returns the variance. More... | |
| double | getStandardDeviation () |
| Returns the standard deviation. More... | |
| double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
| double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
| void | setXinf (double xa) |
Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
| void | setXsup (double xb) |
Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
| static double | density (double alpha, double beta, double x) |
| Computes the density function ( floglogistic ) for a log-logisitic distribution with parameters \(\alpha\) and \(\beta\). | |
| static double | cdf (double alpha, double beta, double x) |
| Computes the distribution function ( Floglogistic ) of the log-logistic distribution with parameters \(\alpha\) and \(\beta\). | |
| static double | barF (double alpha, double beta, double x) |
| Computes the complementary distribution function ( Fbarloglogistic ) of the log-logistic distribution with parameters \(\alpha\) and \(\beta\). | |
| static double | inverseF (double alpha, double beta, double u) |
| Computes the inverse of the log-logistic distribution with parameters \(\alpha\) and \(\beta\). | |
| static double [] | getMLE (double[] x, int n) |
| Estimates the parameters \((\alpha,\beta)\) of the log-logistic distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More... | |
| static LoglogisticDist | getInstanceFromMLE (double[] x, int n) |
| Creates a new instance of a log-logistic distribution with parameters \(\alpha\) and \(\beta\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
| static double | getMean (double alpha, double beta) |
| Computes and returns the mean \(E[X] = \beta\theta \mbox{cosec}(\theta), \mbox{ where } \theta= \pi/\alpha,\) of the log-logistic distribution with parameters \(\alpha\) and \(\beta\). More... | |
| static double | getVariance (double alpha, double beta) |
| Computes and returns the variance \(\mbox{Var}[X] = \beta^2 \theta(2 \mbox{cosec}(2 \theta) - \theta[\mbox{cosec}(\theta)]^2), \mbox{ where } \theta= {\pi/\alpha},\) of the log-logistic distribution with parameters \(\alpha\) and \(\beta\). More... | |
| static double | getStandardDeviation (double alpha, double beta) |
| Computes and returns the standard deviation of the log-logistic distribution with parameters \(\alpha\) and \(\beta\). More... | |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
| int | decPrec = 15 |
Protected Attributes inherited from ContinuousDistribution | |
| double | supportA = Double.NEGATIVE_INFINITY |
| double | supportB = Double.POSITIVE_INFINITY |
Static Protected Attributes inherited from ContinuousDistribution | |
| static final double | XBIG = 100.0 |
| static final double | XBIGM = 1000.0 |
| static final double [] | EPSARRAY |
Extends the class ContinuousDistribution for the Log-Logistic distribution with shape parameter \(\alpha> 0\) and scale parameter \(\beta> 0\).
\[ f(x) = \frac{\alpha(x / \beta)^{\alpha- 1}}{\beta[1 + (x / \beta)^{\alpha}]^2} \qquad\qquad\mbox{for } x > 0 \tag{floglogistic} \]
and its distribution function is
\[ F(x) = \frac{1}{1 + (\frac{x}{\beta})^{-\alpha}} \qquad\qquad\mbox{for } x > 0. \tag{Floglogistic} \]
The complementary distribution is
\[ \bar{F}(x) = \frac{1}{1 + (\frac{x}{\beta})^{\alpha}} \qquad\qquad\mbox{for } x > 0. \tag{Fbarloglogistic} \]
| double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
| x | value at which the complementary distribution function is evaluated |
x Implements Distribution.
| double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
| x | value at which the distribution function is evaluated |
x Implements Distribution.
|
static |
Creates a new instance of a log-logistic distribution with parameters \(\alpha\) and \(\beta\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
| x | the list of observations to use to evaluate parameters |
| n | the number of observations to use to evaluate parameters |
|
static |
Computes and returns the mean \(E[X] = \beta\theta \mbox{cosec}(\theta), \mbox{ where } \theta= \pi/\alpha,\) of the log-logistic distribution with parameters \(\alpha\) and \(\beta\).
|
static |
Estimates the parameters \((\alpha,\beta)\) of the log-logistic distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).
The estimates are returned in a two-element array, in regular order: [ \(\alpha\), \(\beta\)]. The estimate of the parameters is given by maximizing numerically the log-likelihood function, using the Uncmin package [211], [233] .
| x | the list of observations to use to evaluate parameters |
| n | the number of observations to use to evaluate parameters |
| double [] getParams | ( | ) |
Return a table containing the parameters of the current distribution.
This table is put in regular order: [ \(\alpha\), \(\beta\)].
Implements Distribution.
|
static |
Computes and returns the standard deviation of the log-logistic distribution with parameters \(\alpha\) and \(\beta\).
|
static |
Computes and returns the variance \(\mbox{Var}[X] = \beta^2 \theta(2 \mbox{cosec}(2 \theta) - \theta[\mbox{cosec}(\theta)]^2), \mbox{ where } \theta= {\pi/\alpha},\) of the log-logistic distribution with parameters \(\alpha\) and \(\beta\).
| double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
| u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u Implements Distribution.
1.8.14