SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class ContinuousDistribution for the logistic distribution (e.g., [100] (page 115)). More...
Public Member Functions | |
LogisticDist () | |
Constructs a LogisticDist object with default parameters \(\alpha= 0\) and \(\lambda=1\). | |
LogisticDist (double alpha, double lambda) | |
Constructs a LogisticDist object with parameters \(\alpha\) = alpha and \(\lambda\) = lambda . | |
double | density (double x) |
double | cdf (double x) |
Returns the distribution function \(F(x)\). More... | |
double | barF (double x) |
Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
double | getAlpha () |
Return the parameter \(\alpha\) of this object. | |
double | getLambda () |
Returns the parameter \(\lambda\) of this object. | |
void | setParams (double alpha, double lambda) |
Sets the parameters \(\alpha\) and \(\lambda\) of this object. | |
double [] | getParams () |
Return a table containing the parameters of the current distribution. More... | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
abstract double | density (double x) |
Returns \(f(x)\), the density evaluated at \(x\). More... | |
double | barF (double x) |
Returns the complementary distribution function. More... | |
double | inverseBrent (double a, double b, double u, double tol) |
Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
double | inverseBisection (double u) |
Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
double | getMean () |
Returns the mean. More... | |
double | getVariance () |
Returns the variance. More... | |
double | getStandardDeviation () |
Returns the standard deviation. More... | |
double | getXinf () |
Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
double | getXsup () |
Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXinf (double xa) |
Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXsup (double xb) |
Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
static double | density (double alpha, double lambda, double x) |
Computes the density function \(f(x)\). | |
static double | cdf (double alpha, double lambda, double x) |
Computes the distribution function \(F(x)\). | |
static double | barF (double alpha, double lambda, double x) |
Computes the complementary distribution function \(1-F(x)\). | |
static double | inverseF (double alpha, double lambda, double u) |
Computes the inverse distribution function \(F^{-1}(u)\). | |
static double [] | getMLE (double[] x, int n) |
Estimates the parameters \((\alpha, \lambda)\) of the logistic distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More... | |
static LogisticDist | getInstanceFromMLE (double[] x, int n) |
Creates a new instance of a logistic distribution with parameters \(\alpha\) and \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static double | getMean (double alpha, double lambda) |
Computes and returns the mean \(E[X] = \alpha\) of the logistic distribution with parameters \(\alpha\) and \(\lambda\). More... | |
static double | getVariance (double alpha, double lambda) |
Computes and returns the variance \(\mbox{Var}[X] = \pi^2 /(3\lambda^2)\) of the logistic distribution with parameters \(\alpha\) and \(\lambda\). More... | |
static double | getStandardDeviation (double alpha, double lambda) |
Computes and returns the standard deviation of the logistic distribution with parameters \(\alpha\) and \(\lambda\). More... | |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
int | decPrec = 15 |
Protected Attributes inherited from ContinuousDistribution | |
double | supportA = Double.NEGATIVE_INFINITY |
double | supportB = Double.POSITIVE_INFINITY |
Static Protected Attributes inherited from ContinuousDistribution | |
static final double | XBIG = 100.0 |
static final double | XBIGM = 1000.0 |
static final double [] | EPSARRAY |
Extends the class ContinuousDistribution for the logistic distribution (e.g., [100] (page 115)).
It has location parameter \(\alpha\) and scale parameter \(\lambda> 0\). The density is
\[ f (x) = \frac{\lambda e^{-\lambda(x - \alpha)}}{(1 + e^{-\lambda(x - \alpha)})^2} \qquad\qquad\mbox{for } -\infty< x < \infty, \tag{flogistic} \]
and the distribution function is
\[ F(x) = \frac{1}{1 + e^{-\lambda(x - \alpha)}} \qquad\qquad\mbox{for } -\infty< x < \infty. \tag{Flogistic} \]
For \(\lambda=1\) and \(\alpha=0\), one can write
\[ F(x) = \frac{1 + \tanh({x/2})}{2}. \]
The inverse distribution function is given by
\[ F^{-1}(u) = \ln(u/(1-u))/\lambda+ \alpha\qquad\mbox{for } 0 \le u < 1. \]
double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
x | value at which the complementary distribution function is evaluated |
x
Implements Distribution.
double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
x | value at which the distribution function is evaluated |
x
Implements Distribution.
|
static |
Creates a new instance of a logistic distribution with parameters \(\alpha\) and \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
|
static |
Computes and returns the mean \(E[X] = \alpha\) of the logistic distribution with parameters \(\alpha\) and \(\lambda\).
|
static |
Estimates the parameters \((\alpha, \lambda)\) of the logistic distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).
The estimates are returned in a two-element array, in regular order: [ \(\alpha\), \(\lambda\)]. The maximum likelihood estimators are the values \((\hat{\alpha}, \hat{\lambda})\) that satisfy the equations:
\begin{align*} \sum_{i=1}^n \frac{1}{1 + e^{\hat{\lambda} (x_i - \hat{\alpha})}} & = \frac{n}{2} \\ \sum_{i=1}^n \hat{\lambda} (x_i - \hat{\alpha}) \frac{1 - e^{\hat{\lambda} (x_i - \hat{\alpha})}}{1 + e^{\hat{\lambda} (x_i - \hat{\alpha})}} & = n. \end{align*}
See [56] (page 128).
x | the list of observations used to evaluate parameters |
n | the number of observations used to evaluate parameters |
double [] getParams | ( | ) |
Return a table containing the parameters of the current distribution.
This table is put in regular order: [ \(\alpha\), \(\lambda\)].
Implements Distribution.
|
static |
Computes and returns the standard deviation of the logistic distribution with parameters \(\alpha\) and \(\lambda\).
|
static |
Computes and returns the variance \(\mbox{Var}[X] = \pi^2 /(3\lambda^2)\) of the logistic distribution with parameters \(\alpha\) and \(\lambda\).
double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u
Implements Distribution.