| SSJ
    3.3.1
    Stochastic Simulation in Java | 
Extends the class KolmogorovSmirnovDist for the Kolmogorov–Smirnov distribution. More...
| Public Member Functions | |
| KolmogorovSmirnovDistQuick (int n) | |
| Constructs a Kolmogorov–Smirnov distribution with parameter \(n\). | |
| double | density (double x) | 
| double | cdf (double x) | 
| Returns the distribution function \(F(x)\).  More... | |
| double | barF (double x) | 
| Returns \(\bar{F}(x) = 1 - F(x)\).  More... | |
| double | inverseF (double u) | 
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).  More... | |
|  Public Member Functions inherited from KolmogorovSmirnovDist | |
| KolmogorovSmirnovDist (int n) | |
| Constructs a Kolmogorov–Smirnov distribution with parameter \(n\).  More... | |
| double | density (double x) | 
| double | cdf (double x) | 
| Returns the distribution function \(F(x)\).  More... | |
| double | barF (double x) | 
| Returns \(\bar{F}(x) = 1 - F(x)\).  More... | |
| double | inverseF (double u) | 
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).  More... | |
| int | getN () | 
| Returns the parameter \(n\) of this object. | |
| void | setN (int n) | 
| Sets the parameter \(n\) of this object. | |
| double [] | getParams () | 
| Returns an array containing the parameter \(n\) of this object. | |
| String | toString () | 
| Returns a Stringcontaining information about the current distribution. | |
|  Public Member Functions inherited from ContinuousDistribution | |
| abstract double | density (double x) | 
| Returns \(f(x)\), the density evaluated at \(x\).  More... | |
| double | barF (double x) | 
| Returns the complementary distribution function.  More... | |
| double | inverseBrent (double a, double b, double u, double tol) | 
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method.  More... | |
| double | inverseBisection (double u) | 
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection.  More... | |
| double | inverseF (double u) | 
| Returns the inverse distribution function \(x = F^{-1}(u)\).  More... | |
| double | getMean () | 
| Returns the mean.  More... | |
| double | getVariance () | 
| Returns the variance.  More... | |
| double | getStandardDeviation () | 
| Returns the standard deviation.  More... | |
| double | getXinf () | 
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\).  More... | |
| double | getXsup () | 
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\).  More... | |
| void | setXinf (double xa) | 
| Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\).  More... | |
| void | setXsup (double xb) | 
| Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\).  More... | |
| Static Public Member Functions | |
| static double | density (int n, double x) | 
| Computes the density for the Kolmogorov–Smirnov distribution with parameter \(n\). | |
| static double | cdf (int n, double x) | 
| Computes the Kolmogorov–Smirnov distribution function \(u = P[D_n \le x]\) with parameter \(n\), using the program described in [216] .  More... | |
| static double | barF (int n, double x) | 
| Computes the complementary Kolmogorov–Smirnov distribution \(P[D_n \ge x]\) with parameter \(n\), in a form that is more precise in the upper tail, using the program described in [216] .  More... | |
| static double | inverseF (int n, double u) | 
| Computes the inverse \(x = F^{-1}(u)\) of the distribution \(F(x)\) with parameter \(n\). | |
|  Static Public Member Functions inherited from KolmogorovSmirnovDist | |
| static double | density (int n, double x) | 
| Computes the density for the Kolmogorov–Smirnov distribution with parameter \(n\). | |
| static double | cdf (int n, double x) | 
| Computes the Kolmogorov–Smirnov distribution function \(F(x)\) with parameter \(n\) using Durbin’s matrix formula [55] .  More... | |
| static double | barF (int n, double x) | 
| Computes the complementary distribution function \(\bar{F}(x)\) with parameter \(n\).  More... | |
| static double | inverseF (int n, double u) | 
| Computes the inverse \(x = F^{-1}(u)\) of the Kolmogorov–Smirnov distribution \(F(x)\) with parameter \(n\). | |
| Additional Inherited Members | |
|  Public Attributes inherited from ContinuousDistribution | |
| int | decPrec = 15 | 
|  Static Protected Member Functions inherited from KolmogorovSmirnovDist | |
| static double | densConnue (int n, double x) | 
| static double | DurbinMatrix (int n, double d) | 
| static double | cdfConnu (int n, double x) | 
| static double | barFConnu (int n, double x) | 
| static double | inverseConnue (int n, double u) | 
|  Protected Attributes inherited from KolmogorovSmirnovDist | |
| int | n | 
|  Protected Attributes inherited from ContinuousDistribution | |
| double | supportA = Double.NEGATIVE_INFINITY | 
| double | supportB = Double.POSITIVE_INFINITY | 
|  Static Protected Attributes inherited from KolmogorovSmirnovDist | |
| static final int | NEXACT = 500 | 
|  Static Protected Attributes inherited from ContinuousDistribution | |
| static final double | XBIG = 100.0 | 
| static final double | XBIGM = 1000.0 | 
| static final double [] | EPSARRAY | 
Extends the class KolmogorovSmirnovDist for the Kolmogorov–Smirnov distribution.
The methods of this class are much faster than those of class KolmogorovSmirnovDist.
| double barF | ( | double | x | ) | 
Returns \(\bar{F}(x) = 1 - F(x)\).
| x | value at which the complementary distribution function is evaluated | 
x Implements Distribution.
| 
 | static | 
Computes the complementary Kolmogorov–Smirnov distribution \(P[D_n \ge x]\) with parameter \(n\), in a form that is more precise in the upper tail, using the program described in [216] .
It returns at least 10 decimal digits of precision everywhere for all \(n \le500\), at least 6 decimal digits of precision for \(500 < n \le200000\), and a few correct decimal digits (1 to 5) for \(n > 200000\). This method is much faster and more precise for \(x\) close to 1, than method barF of KolmogorovSmirnovDist for moderate or large \(n\). Restriction: \(n\ge1\). 
| double cdf | ( | double | x | ) | 
Returns the distribution function \(F(x)\).
| x | value at which the distribution function is evaluated | 
x Implements Distribution.
| 
 | static | 
Computes the Kolmogorov–Smirnov distribution function \(u = P[D_n \le x]\) with parameter \(n\), using the program described in [216] .
This method uses Pomeranz’s recursion algorithm and the Durbin matrix algorithm [28], [205], [175]  for \(n \le500\), which returns at least 13 decimal digits of precision. It uses the Pelz-Good asymptotic expansion [202]  in the central part of the range for \(n > 500\) and returns at least 7 decimal digits of precision everywhere for \(500 < n \le100000\). For \(n > 100000\), it returns at least 5 decimal digits of precision for all \(u > 10^{-16}\), and a few correct decimals when \(u \le10^{-16}\). This method is much faster than method cdf of KolmogorovSmirnovDist for moderate or large \(n\). Restriction: \(n\ge1\). 
| double inverseF | ( | double | u | ) | 
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
| u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated | 
u Implements Distribution.
 1.8.14
 1.8.14