SSJ  3.3.1
Stochastic Simulation in Java
Classes | Public Member Functions | Static Public Member Functions | List of all members
KolmogorovSmirnovDistQuick Class Reference

Extends the class KolmogorovSmirnovDist for the Kolmogorov–Smirnov distribution. More...

Inheritance diagram for KolmogorovSmirnovDistQuick:
[legend]
Collaboration diagram for KolmogorovSmirnovDistQuick:
[legend]

Public Member Functions

 KolmogorovSmirnovDistQuick (int n)
 Constructs a Kolmogorov–Smirnov distribution with parameter \(n\).
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
- Public Member Functions inherited from KolmogorovSmirnovDist
 KolmogorovSmirnovDist (int n)
 Constructs a Kolmogorov–Smirnov distribution with parameter \(n\). More...
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
int getN ()
 Returns the parameter \(n\) of this object.
 
void setN (int n)
 Sets the parameter \(n\) of this object.
 
double [] getParams ()
 Returns an array containing the parameter \(n\) of this object.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (int n, double x)
 Computes the density for the Kolmogorov–Smirnov distribution with parameter \(n\).
 
static double cdf (int n, double x)
 Computes the Kolmogorov–Smirnov distribution function \(u = P[D_n \le x]\) with parameter \(n\), using the program described in [216] . More...
 
static double barF (int n, double x)
 Computes the complementary Kolmogorov–Smirnov distribution \(P[D_n \ge x]\) with parameter \(n\), in a form that is more precise in the upper tail, using the program described in [216] . More...
 
static double inverseF (int n, double u)
 Computes the inverse \(x = F^{-1}(u)\) of the distribution \(F(x)\) with parameter \(n\).
 
- Static Public Member Functions inherited from KolmogorovSmirnovDist
static double density (int n, double x)
 Computes the density for the Kolmogorov–Smirnov distribution with parameter \(n\).
 
static double cdf (int n, double x)
 Computes the Kolmogorov–Smirnov distribution function \(F(x)\) with parameter \(n\) using Durbin’s matrix formula [55] . More...
 
static double barF (int n, double x)
 Computes the complementary distribution function \(\bar{F}(x)\) with parameter \(n\). More...
 
static double inverseF (int n, double u)
 Computes the inverse \(x = F^{-1}(u)\) of the Kolmogorov–Smirnov distribution \(F(x)\) with parameter \(n\).
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Static Protected Member Functions inherited from KolmogorovSmirnovDist
static double densConnue (int n, double x)
 
static double DurbinMatrix (int n, double d)
 
static double cdfConnu (int n, double x)
 
static double barFConnu (int n, double x)
 
static double inverseConnue (int n, double u)
 
- Protected Attributes inherited from KolmogorovSmirnovDist
int n
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from KolmogorovSmirnovDist
static final int NEXACT = 500
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Extends the class KolmogorovSmirnovDist for the Kolmogorov–Smirnov distribution.

The methods of this class are much faster than those of class KolmogorovSmirnovDist.

Member Function Documentation

◆ barF() [1/2]

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ barF() [2/2]

static double barF ( int  n,
double  x 
)
static

Computes the complementary Kolmogorov–Smirnov distribution \(P[D_n \ge x]\) with parameter \(n\), in a form that is more precise in the upper tail, using the program described in [216] .

It returns at least 10 decimal digits of precision everywhere for all \(n \le500\), at least 6 decimal digits of precision for \(500 < n \le200000\), and a few correct decimal digits (1 to 5) for \(n > 200000\). This method is much faster and more precise for \(x\) close to 1, than method barF of KolmogorovSmirnovDist for moderate or large \(n\). Restriction: \(n\ge1\).

◆ cdf() [1/2]

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ cdf() [2/2]

static double cdf ( int  n,
double  x 
)
static

Computes the Kolmogorov–Smirnov distribution function \(u = P[D_n \le x]\) with parameter \(n\), using the program described in [216] .

This method uses Pomeranz’s recursion algorithm and the Durbin matrix algorithm [28], [205], [175]  for \(n \le500\), which returns at least 13 decimal digits of precision. It uses the Pelz-Good asymptotic expansion [202]  in the central part of the range for \(n > 500\) and returns at least 7 decimal digits of precision everywhere for \(500 < n \le100000\). For \(n > 100000\), it returns at least 5 decimal digits of precision for all \(u > 10^{-16}\), and a few correct decimals when \(u \le10^{-16}\). This method is much faster than method cdf of KolmogorovSmirnovDist for moderate or large \(n\). Restriction: \(n\ge1\).

◆ inverseF()

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.


The documentation for this class was generated from the following file: