SSJ  3.3.1
Stochastic Simulation in Java
Classes | Public Member Functions | Static Public Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | List of all members
KolmogorovSmirnovDist Class Reference

Extends the class ContinuousDistribution for the Kolmogorov-Smirnov distribution with parameter \(n\) [55] . More...

Inheritance diagram for KolmogorovSmirnovDist:
[legend]
Collaboration diagram for KolmogorovSmirnovDist:
[legend]

Public Member Functions

 KolmogorovSmirnovDist (int n)
 Constructs a Kolmogorov–Smirnov distribution with parameter \(n\). More...
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
int getN ()
 Returns the parameter \(n\) of this object.
 
void setN (int n)
 Sets the parameter \(n\) of this object.
 
double [] getParams ()
 Returns an array containing the parameter \(n\) of this object.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (int n, double x)
 Computes the density for the Kolmogorov–Smirnov distribution with parameter \(n\).
 
static double cdf (int n, double x)
 Computes the Kolmogorov–Smirnov distribution function \(F(x)\) with parameter \(n\) using Durbin’s matrix formula [55] . More...
 
static double barF (int n, double x)
 Computes the complementary distribution function \(\bar{F}(x)\) with parameter \(n\). More...
 
static double inverseF (int n, double u)
 Computes the inverse \(x = F^{-1}(u)\) of the Kolmogorov–Smirnov distribution \(F(x)\) with parameter \(n\).
 

Static Protected Member Functions

static double densConnue (int n, double x)
 
static double DurbinMatrix (int n, double d)
 
static double cdfConnu (int n, double x)
 
static double barFConnu (int n, double x)
 
static double inverseConnue (int n, double u)
 

Protected Attributes

int n
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 

Static Protected Attributes

static final int NEXACT = 500
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 

Detailed Description

Extends the class ContinuousDistribution for the Kolmogorov-Smirnov distribution with parameter \(n\) [55] .

Given an empirical distribution \(F_n\) with \(n\) independent observations and a continuous distribution \(F(x)\), the two-sided Kolmogorov–Smirnov statistic is defined as

\[ D_n = \sup_{-\infty\le x \le\infty} |F_n(x) - F(x)| = \max\{D_n^+, D_n^-\}, \]

where \(D_n^+\) and \(D_n^-\) are the Kolmogorov–Smirnov+ and Kolmogorov–Smirnov \(-\) statistics as defined in equations DNp and DNm of this guide. This class implements a high precision version of the Kolmogorov–Smirnov distribution \(P[D_n \le x]\); it is a Java translation of the \(C\) program written in [175] . According to its authors, it should give 13 decimal digits of precision. It is extremely slow for large values of \(n\).

Constructor & Destructor Documentation

◆ KolmogorovSmirnovDist()

Constructs a Kolmogorov–Smirnov distribution with parameter \(n\).

Restriction: \(n \ge1\).

Member Function Documentation

◆ barF() [1/2]

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ barF() [2/2]

static double barF ( int  n,
double  x 
)
static

Computes the complementary distribution function \(\bar{F}(x)\) with parameter \(n\).

Simply returns 1 - cdf(n,x). It is not precise in the upper tail.

◆ cdf() [1/2]

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ cdf() [2/2]

static double cdf ( int  n,
double  x 
)
static

Computes the Kolmogorov–Smirnov distribution function \(F(x)\) with parameter \(n\) using Durbin’s matrix formula [55] .

It is a translation of the \(C\) program in [175] ; according to its authors, it returns 13 decimal digits of precision. It is extremely slow for large \(n\).

◆ inverseF()

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.


The documentation for this class was generated from the following file: