SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class ContinuousDistribution for the inverse Gaussian distribution with location parameter \(\mu> 0\) and scale parameter \(\lambda> 0\). More...
Public Member Functions | |
InverseGaussianDist (double mu, double lambda) | |
Constructs the inverse Gaussian distribution with parameters \(\mu\) and \(\lambda\). | |
double | density (double x) |
double | cdf (double x) |
Returns the distribution function \(F(x)\). More... | |
double | barF (double x) |
Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
double | getLambda () |
Returns the parameter \(\lambda\) of this object. | |
double | getMu () |
Returns the parameter \(\mu\) of this object. | |
void | setParams (double mu, double lambda) |
Sets the parameters \(\mu\) and \(\lambda\) of this object. | |
double [] | getParams () |
Return a table containing the parameters of the current distribution. More... | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
abstract double | density (double x) |
Returns \(f(x)\), the density evaluated at \(x\). More... | |
double | barF (double x) |
Returns the complementary distribution function. More... | |
double | inverseBrent (double a, double b, double u, double tol) |
Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
double | inverseBisection (double u) |
Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
double | getMean () |
Returns the mean. More... | |
double | getVariance () |
Returns the variance. More... | |
double | getStandardDeviation () |
Returns the standard deviation. More... | |
double | getXinf () |
Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
double | getXsup () |
Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXinf (double xa) |
Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXsup (double xb) |
Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
static double | density (double mu, double lambda, double x) |
Computes the density function ( fInverseGaussian ) for the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\), evaluated at \(x\). | |
static double | cdf (double mu, double lambda, double x) |
Computes the distribution function ( FInverseGaussian ) of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\), evaluated at \(x\). | |
static double | barF (double mu, double lambda, double x) |
Computes the complementary distribution function of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\), evaluated at \(x\). | |
static double | inverseF (double mu, double lambda, double u) |
Computes the inverse of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\). | |
static double [] | getMLE (double[] x, int n) |
Estimates the parameters \((\mu, \lambda)\) of the inverse gaussian distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More... | |
static InverseGaussianDist | getInstanceFromMLE (double[] x, int n) |
Creates a new instance of an inverse gaussian distribution with parameters \(\mu\) and \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static double | getMean (double mu, double lambda) |
Returns the mean \(E[X] = \mu\) of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\). More... | |
static double | getVariance (double mu, double lambda) |
Computes and returns the variance \(\mbox{Var}[X] = \mu^3/\lambda\) of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\). More... | |
static double | getStandardDeviation (double mu, double lambda) |
Computes and returns the standard deviation of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\). More... | |
Protected Attributes | |
double | mu |
double | lambda |
Protected Attributes inherited from ContinuousDistribution | |
double | supportA = Double.NEGATIVE_INFINITY |
double | supportB = Double.POSITIVE_INFINITY |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
int | decPrec = 15 |
Static Protected Attributes inherited from ContinuousDistribution | |
static final double | XBIG = 100.0 |
static final double | XBIGM = 1000.0 |
static final double [] | EPSARRAY |
Extends the class ContinuousDistribution for the inverse Gaussian distribution with location parameter \(\mu> 0\) and scale parameter \(\lambda> 0\).
\[ f(x) = \sqrt{\frac{\lambda}{2\pi x^3}}\; e^{{-\lambda(x - \mu)^2}/{(2\mu^2x)}}, \qquad\mbox{for } x > 0. \tag{fInverseGaussian} \]
The distribution function is given by
\[ F(x) = \Phi\left(\sqrt{\frac{\lambda}{x}}\left(\frac{x}{\mu} - 1\right)\right) + e^{({2\lambda}/{\mu})}\Phi\left(-\sqrt{\frac{\lambda}{x}}\left(\frac{x}{\mu} + 1\right)\right), \tag{FInverseGaussian} \]
where \(\Phi\) is the standard normal distribution function.
The non-static versions of the methods cdf
, barF
, and inverseF
call the static version of the same name.
double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
x | value at which the complementary distribution function is evaluated |
x
Implements Distribution.
double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
x | value at which the distribution function is evaluated |
x
Implements Distribution.
|
static |
Creates a new instance of an inverse gaussian distribution with parameters \(\mu\) and \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
|
static |
Returns the mean \(E[X] = \mu\) of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\).
|
static |
Estimates the parameters \((\mu, \lambda)\) of the inverse gaussian distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).
The estimates are returned in a two-element array, in regular order: [ \(\mu\), \(\lambda\)]. The maximum likelihood estimators are the values \((\hat{\mu}, \hat{\lambda})\) that satisfy the equations:
\begin{align*} \hat{\mu} & = \bar{x}_n \\ \frac{1}{\hat{\lambda}} & = \frac{1}{n} \sum_{i=1}^n \left(\frac{1}{x_i} - \frac{1}{\hat{\mu}}\right), \end{align*}
where \(\bar{x}_n\) is the average of \(x[0],…,x[n-1]\), [99] (page 271).
x | the list of observations used to evaluate parameters |
n | the number of observations used to evaluate parameters |
double [] getParams | ( | ) |
Return a table containing the parameters of the current distribution.
This table is put in regular order: [ \(\mu\), \(\lambda\)].
Implements Distribution.
|
static |
Computes and returns the standard deviation of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\).
|
static |
Computes and returns the variance \(\mbox{Var}[X] = \mu^3/\lambda\) of the inverse gaussian distribution with parameters \(\mu\) and \(\lambda\).
double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u
Implements Distribution.