Extends the class ContinuousDistribution for the half-normal distribution with parameters \(\mu\) and \(\sigma> 0\).
More...
|
| HalfNormalDist (double mu, double sigma) |
| Constructs a HalfNormalDist object with parameters \(\mu=\) mu and \(\sigma=\) sigma .
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
double | getMu () |
| Returns the parameter \(\mu\) of this object. More...
|
|
double | getSigma () |
| Returns the parameter \(\sigma\) of this object. More...
|
|
void | setParams (double mu, double sigma) |
| Sets the parameters \(\mu\) and \(\sigma\). More...
|
|
double [] | getParams () |
| Return a table containing the parameters of the current distribution. More...
|
|
String | toString () |
| Returns a String containing information about the current distribution. More...
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (double mu, double sigma, double x) |
| Computes the density function of the half-normal distribution. More...
|
|
static double | cdf (double mu, double sigma, double x) |
| Computes the distribution function. More...
|
|
static double | barF (double mu, double sigma, double x) |
| Computes the complementary distribution function. More...
|
|
static double | inverseF (double mu, double sigma, double u) |
| Computes the inverse of the distribution function. More...
|
|
static double [] | getMLE (double[] x, int n) |
| Estimates the parameters \(\mu\) and \(\sigma\) of the half-normal distribution using the maximum likelihood method from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
|
|
static double [] | getMLE (double[] x, int n, double mu) |
| Estimates the parameter \(\sigma\) of the half-normal distribution using the maximum likelihood method from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\) and the parameter \(\mu\) = mu . More...
|
|
static double | getMean (double mu, double sigma) |
| Computes and returns the mean \( E[X] = \mu+ \sigma\sqrt{2 / \pi}. \). More...
|
|
static double | getVariance (double mu, double sigma) |
| Computes and returns the variance \( \mbox{Var}[X] = \left(1-2/\pi\right)\sigma^2. \). More...
|
|
static double | getStandardDeviation (double mu, double sigma) |
| Computes the standard deviation of the half-normal distribution with parameters \(\mu\) and \(\sigma\). More...
|
|
|
double | mu |
|
double | sigma |
|
double | C1 |
|
double | supportA = Double.NEGATIVE_INFINITY |
|
double | supportB = Double.POSITIVE_INFINITY |
|
|
int | decPrec = 15 |
|
static final double | XBIG = 100.0 |
|
static final double | XBIGM = 1000.0 |
|
static final double [] | EPSARRAY |
|
Extends the class ContinuousDistribution for the half-normal distribution with parameters \(\mu\) and \(\sigma> 0\).
Its density is
\begin{align} f(x) & = \frac{1}{\sigma}\sqrt{\frac{2}{\pi}}\; e^{-(x-\mu)^2/2\sigma^2}, \qquad\mbox{for } x \ge\mu. \\ \tag{fHalfNormal} f(x) & = 0, \qquad\mbox{for } x < \mu. \nonumber \end{align}
◆ barF() [1/2]
Returns \(\bar{F}(x) = 1 - F(x)\).
- Parameters
-
x | value at which the complementary distribution function is evaluated |
- Returns
- complementary distribution function evaluated at
x
Implements Distribution.
◆ barF() [2/2]
static double barF |
( |
double |
mu, |
|
|
double |
sigma, |
|
|
double |
x |
|
) |
| |
|
static |
Computes the complementary distribution function.
- Parameters
-
mu | the parameter mu |
sigma | the parameter sigma |
x | the value at which the complementary distribution is evaluated |
- Returns
- returns the complementary distribution function
◆ cdf() [1/2]
Returns the distribution function \(F(x)\).
- Parameters
-
x | value at which the distribution function is evaluated |
- Returns
- distribution function evaluated at
x
Implements Distribution.
◆ cdf() [2/2]
static double cdf |
( |
double |
mu, |
|
|
double |
sigma, |
|
|
double |
x |
|
) |
| |
|
static |
Computes the distribution function.
- Parameters
-
mu | the parameter mu |
sigma | the parameter sigma |
x | the value at which the distribution is evaluated |
- Returns
- returns the cdf function
◆ density()
static double density |
( |
double |
mu, |
|
|
double |
sigma, |
|
|
double |
x |
|
) |
| |
|
static |
Computes the density function of the half-normal distribution.
- Parameters
-
mu | the parameter mu |
sigma | the parameter sigma |
x | the value at which the density is evaluated |
- Returns
- returns the density function
◆ getMean()
static double getMean |
( |
double |
mu, |
|
|
double |
sigma |
|
) |
| |
|
static |
Computes and returns the mean \( E[X] = \mu+ \sigma\sqrt{2 / \pi}. \).
- Parameters
-
mu | the parameter mu |
sigma | the parameter sigma |
- Returns
- returns the mean
◆ getMLE() [1/2]
static double [] getMLE |
( |
double [] |
x, |
|
|
int |
n |
|
) |
| |
|
static |
Estimates the parameters \(\mu\) and \(\sigma\) of the half-normal distribution using the maximum likelihood method from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
The estimates are returned in a two-element array: [ \(\mu\), \(\sigma\)]. The maximum likelihood estimators are the values \(\hat{\mu}\) and \(\hat{\sigma}\) that satisfy the equation
\begin{align*} \hat{\mu}= \min_j \{x_j\}, \\ \hat{\sigma}= \sqrt{\frac{1}{n}\Sigma_j(x_j-\hat{\mu})^2}. \end{align*}
- Parameters
-
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
- Returns
- returns the parameters [ \(\mu\), \(\sigma\)]
◆ getMLE() [2/2]
static double [] getMLE |
( |
double [] |
x, |
|
|
int |
n, |
|
|
double |
mu |
|
) |
| |
|
static |
Estimates the parameter \(\sigma\) of the half-normal distribution using the maximum likelihood method from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\) and the parameter \(\mu\) = mu
.
The estimate is returned in a one-element array: [ \(\sigma\)]. The maximum likelihood estimator is the value \(\hat{\sigma}\) that satisfies the equation
\begin{align*} \hat{\sigma}= \sqrt{\frac{1}{n}\Sigma_j(x_j-\mu)^2}. \end{align*}
- Parameters
-
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameter |
mu | the parameter mu |
- Returns
- returns the parameter [ \(\sigma\)]
◆ getMu()
Returns the parameter \(\mu\) of this object.
- Returns
- returns the parameter mu
◆ getParams()
Return a table containing the parameters of the current distribution.
This table is put in regular order: [ \(\mu\), \(\sigma\)].
- Returns
- returns the parameters [ \(\mu\), \(\sigma\)]
Implements Distribution.
◆ getSigma()
Returns the parameter \(\sigma\) of this object.
- Returns
- returns the parameter sigma
◆ getStandardDeviation()
static double getStandardDeviation |
( |
double |
mu, |
|
|
double |
sigma |
|
) |
| |
|
static |
Computes the standard deviation of the half-normal distribution with parameters \(\mu\) and \(\sigma\).
- Parameters
-
mu | the parameter mu |
sigma | the parameter sigma |
- Returns
- returns the standard deviation
◆ getVariance()
static double getVariance |
( |
double |
mu, |
|
|
double |
sigma |
|
) |
| |
|
static |
Computes and returns the variance \( \mbox{Var}[X] = \left(1-2/\pi\right)\sigma^2. \).
- Parameters
-
mu | the parameter mu |
sigma | the parameter sigma |
- Returns
- returns the variance
◆ inverseF() [1/2]
double inverseF |
( |
double |
u | ) |
|
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
- Parameters
-
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
- Returns
- the inverse distribution function evaluated at
u
Implements Distribution.
◆ inverseF() [2/2]
static double inverseF |
( |
double |
mu, |
|
|
double |
sigma, |
|
|
double |
u |
|
) |
| |
|
static |
Computes the inverse of the distribution function.
- Parameters
-
mu | the parameter mu |
sigma | the parameter sigma |
u | the value at which the inverse distribution is evaluated |
- Returns
- returns the inverse distribution function
◆ setParams()
void setParams |
( |
double |
mu, |
|
|
double |
sigma |
|
) |
| |
Sets the parameters \(\mu\) and \(\sigma\).
- Parameters
-
mu | the parameter mu |
sigma | the parameter sigma |
◆ toString()
Returns a String
containing information about the current distribution.
- Returns
- returns a
String
containing information about the current distribution.
The documentation for this class was generated from the following file: