SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class ContinuousDistribution for the Fréchet distribution [100] (page 3), with location parameter \(\delta\), scale parameter \(\beta> 0\), and shape parameter \(\alpha> 0\), where we use the notation \(z = (x-\delta)/\beta\). More...
Public Member Functions | |
FrechetDist (double alpha) | |
Constructor for the standard Fréchet distribution with parameters \(\beta\) = 1 and \(\delta\) = 0. | |
FrechetDist (double alpha, double beta, double delta) | |
Constructs a FrechetDist object with parameters \(\alpha\) = alpha , \(\beta\) = beta and \(\delta\) = delta . | |
double | density (double x) |
double | cdf (double x) |
Returns the distribution function \(F(x)\). More... | |
double | barF (double x) |
Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
double | getAlpha () |
Returns the parameter \(\alpha\) of this object. | |
double | getBeta () |
Returns the parameter \(\beta\) of this object. | |
double | getDelta () |
Returns the parameter \(\delta\) of this object. | |
void | setParams (double alpha, double beta, double delta) |
Sets the parameters \(\alpha\), \(\beta\) and \(\delta\) of this object. | |
double [] | getParams () |
Return an array containing the parameters of the current object in regular order: [ \(\alpha\), \(\beta\), \(\delta\)]. | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
abstract double | density (double x) |
Returns \(f(x)\), the density evaluated at \(x\). More... | |
double | barF (double x) |
Returns the complementary distribution function. More... | |
double | inverseBrent (double a, double b, double u, double tol) |
Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
double | inverseBisection (double u) |
Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
double | getMean () |
Returns the mean. More... | |
double | getVariance () |
Returns the variance. More... | |
double | getStandardDeviation () |
Returns the standard deviation. More... | |
double | getXinf () |
Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
double | getXsup () |
Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXinf (double xa) |
Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXsup (double xb) |
Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
static double | density (double alpha, double beta, double delta, double x) |
Computes and returns the density function. | |
static double | cdf (double alpha, double beta, double delta, double x) |
Computes and returns the distribution function. | |
static double | barF (double alpha, double beta, double delta, double x) |
Computes and returns the complementary distribution function \(1 - F(x)\). | |
static double | inverseF (double alpha, double beta, double delta, double u) |
Computes and returns the inverse distribution function. | |
static double [] | getMLE (double[] x, int n, double delta) |
Given \(\delta=\) delta , estimates the parameters \((\alpha, \beta)\) of the Fréchet distribution using the maximum likelihood method with the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More... | |
static FrechetDist | getInstanceFromMLE (double[] x, int n, double delta) |
Given \(\delta=\) delta , creates a new instance of a Fréchet distribution with parameters \(\alpha\) and \(\beta\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static double | getMean (double alpha, double beta, double delta) |
Returns the mean of the Fréchet distribution with parameters \(\alpha\), \(\beta\) and \(\delta\). More... | |
static double | getVariance (double alpha, double beta, double delta) |
Returns the variance of the Fréchet distribution with parameters \(\alpha\), \(\beta\) and \(\delta\). More... | |
static double | getStandardDeviation (double alpha, double beta, double delta) |
Returns the standard deviation of the Fréchet distribution with parameters \(\alpha\), \(\beta\) and \(\delta\). More... | |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
int | decPrec = 15 |
Protected Attributes inherited from ContinuousDistribution | |
double | supportA = Double.NEGATIVE_INFINITY |
double | supportB = Double.POSITIVE_INFINITY |
Static Protected Attributes inherited from ContinuousDistribution | |
static final double | XBIG = 100.0 |
static final double | XBIGM = 1000.0 |
static final double [] | EPSARRAY |
Extends the class ContinuousDistribution for the Fréchet distribution [100] (page 3), with location parameter \(\delta\), scale parameter \(\beta> 0\), and shape parameter \(\alpha> 0\), where we use the notation \(z = (x-\delta)/\beta\).
It has density
\[ f (x) = \frac{\alpha e^{-z^{-\alpha}}}{\beta z^{\alpha+1}}, \qquad\mbox{for } x > \delta \]
and distribution function
\[ F(x) = e^{-z^{-\alpha}}, \qquad\mbox{for } x > \delta. \]
Both the density and the distribution are 0 for \(x \le\delta\).
The mean is given by
\[ E[X] = \delta+ \beta\Gamma\!\left(1 - \frac{1}{\alpha}\right), \]
where \(\Gamma(x)\) is the gamma function. The variance is
\[ \mbox{Var}[X] = \beta^2 \left[\Gamma\!\left(1 - \frac{2}{\alpha}\right) - \Gamma^2\!\left(1 - \frac{1}{\alpha}\right)\right]. \]
double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
x | value at which the complementary distribution function is evaluated |
x
Implements Distribution.
double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
x | value at which the distribution function is evaluated |
x
Implements Distribution.
|
static |
Given \(\delta=\) delta
, creates a new instance of a Fréchet distribution with parameters \(\alpha\) and \(\beta\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
delta | location parameter |
|
static |
Returns the mean of the Fréchet distribution with parameters \(\alpha\), \(\beta\) and \(\delta\).
|
static |
Given \(\delta=\) delta
, estimates the parameters \((\alpha, \beta)\) of the Fréchet distribution using the maximum likelihood method with the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\).
The estimates are returned in a two-element array, in regular order: [ \(\alpha\), \(\beta\)]. The maximum likelihood estimators are the values \((\hat{\alpha}, \hat{\beta})\) that satisfy the equations:
\begin{align*} \hat{\beta} & = \left(\frac{1}{n} \sum_{i=0}^{n-1} (x_i - \delta)^{-\hat{\alpha}}\right)^{\!\!-1/\hat{\alpha}} \\ \frac{1}{n} \sum_{i=0}^{n-1} \ln(x_i - \delta) & = \frac{1}{\hat{\alpha}} + \frac{\sum_{i=0}^{n-1} (x_i - \delta)^{-\hat{\alpha}}\ln(x_i - \delta)}{\sum_{i=0}^{n-1} (x_i - \delta)^{-\hat{\alpha}}}. \end{align*}
x | the list of observations used to evaluate parameters |
n | the number of observations used to evaluate parameters |
delta | location parameter |
|
static |
Returns the standard deviation of the Fréchet distribution with parameters \(\alpha\), \(\beta\) and \(\delta\).
|
static |
Returns the variance of the Fréchet distribution with parameters \(\alpha\), \(\beta\) and \(\delta\).
double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u
Implements Distribution.