|
| FoldedNormalDist (double mu, double sigma) |
| Constructs a FoldedNormalDist object with parameters \(\mu=\) mu and \(\sigma=\) sigma .
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
double | getMu () |
| Returns the parameter \(\mu\) of this object. More...
|
|
double | getSigma () |
| Returns the parameter \(\sigma\) of this object. More...
|
|
void | setParams (double mu, double sigma) |
| Sets the parameters \(\mu\) and \(\sigma\) for this object. More...
|
|
double [] | getParams () |
| Return a table containing the parameters of the current distribution. More...
|
|
String | toString () |
| Returns a String containing information about the current distribution. More...
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (double mu, double sigma, double x) |
| Computes the density function of the folded normal distribution. More...
|
|
static double | cdf (double mu, double sigma, double x) |
| Computes the distribution function. More...
|
|
static double | barF (double mu, double sigma, double x) |
| Computes the complementary distribution function. More...
|
|
static double | inverseF (double mu, double sigma, double u) |
| Computes the inverse of the distribution function. More...
|
|
static double | getMean (double mu, double sigma) |
| Computes and returns the mean
\[ E[X] = \sigma\sqrt{\frac{2}{\pi}}\; e^{-\mu^2/(2\sigma^2)} + \mu \mbox{erf}\left(\frac{\mu}{\sigma\sqrt{2}}\right), \]
where erf \((z)\) is the error function. More...
|
|
static double | getVariance (double mu, double sigma) |
| Computes and returns the variance
\[ \mbox{Var}[X] = \mu^2 + \sigma^2 - E[X]^2. \]
. More...
|
|
static double | getStandardDeviation (double mu, double sigma) |
| Computes the standard deviation of the folded normal distribution with parameters \(\mu\) and \(\sigma\). More...
|
|
static double [] | getMLE (double[] x, int n) |
| NOT IMPLEMENTED. More...
|
|
Extends the class ContinuousDistribution for the folded normal distribution with parameters \(\mu\ge0\) and \(\sigma> 0\).
The density is
\[ f(x) = \phi\left(\frac{x-\mu}{\sigma}\right) + \phi\left(\frac{-x-\mu}{\sigma}\right) \qquad\mbox{for } x \ge0, \tag{fFoldedNormal} \]
\[ f(x) = 0, \qquad\mbox{ for } x < 0, \]
where \( \phi\) denotes the density function of a standard normal distribution.