|
| ErlangDist (int k) |
| Constructs a ErlangDist object with parameters \(k\) = k and \(\lambda=1\).
|
|
| ErlangDist (int k, double lambda) |
| Constructs a ErlangDist object with parameters \(k\) = k and \(\lambda\) = lambda .
|
|
int | getK () |
| Returns the parameter \(k\) for this object.
|
|
void | setParams (int k, double lambda, int d) |
| Sets the parameters \(k\) and \(\lambda\) of the distribution for this object. More...
|
|
double [] | getParams () |
| Return a table containing parameters of the current distribution. More...
|
|
String | toString () |
| Returns a String containing information about the current distribution.
|
|
| GammaDist (double alpha) |
| Constructs a GammaDist object with parameters \(\alpha\) = alpha and \(\lambda=1\).
|
|
| GammaDist (double alpha, double lambda) |
| Constructs a GammaDist object with parameters \(\alpha\) = alpha and \(\lambda\) = lambda .
|
|
| GammaDist (double alpha, double lambda, int d) |
| Constructs a GammaDist object with parameters \(\alpha\) = alpha and \(\lambda\) = lambda , and approximations of roughly d decimal digits of precision when computing functions.
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
double | getAlpha () |
| Return the parameter \(\alpha\) for this object.
|
|
double | getLambda () |
| Return the parameter \(\lambda\) for this object.
|
|
void | setParams (double alpha, double lambda, int d) |
|
double [] | getParams () |
| Return a table containing the parameters of the current distribution. More...
|
|
String | toString () |
| Returns a String containing information about the current distribution.
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (int k, double lambda, double x) |
| Computes the density function.
|
|
static double | cdf (int k, double lambda, int d, double x) |
| Computes the distribution function using the gamma distribution function.
|
|
static double | barF (int k, double lambda, int d, double x) |
| Computes the complementary distribution function.
|
|
static double | inverseF (int k, double lambda, int d, double u) |
| Returns the inverse distribution function.
|
|
static double [] | getMLE (double[] x, int n) |
| Estimates the parameters \((k,\lambda)\) of the Erlang distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
|
|
static ErlangDist | getInstanceFromMLE (double[] x, int n) |
| Creates a new instance of an Erlang distribution with parameters \(k\) and \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
|
|
static double | getMean (int k, double lambda) |
| Computes and returns the mean, \(E[X] = k/\lambda\), of the Erlang distribution with parameters \(k\) and \(\lambda\). More...
|
|
static double | getVariance (int k, double lambda) |
| Computes and returns the variance, \(\mbox{Var}[X] = k/\lambda^2\), of the Erlang distribution with parameters \(k\) and \(\lambda\). More...
|
|
static double | getStandardDeviation (int k, double lambda) |
| Computes and returns the standard deviation of the Erlang distribution with parameters \(k\) and \(\lambda\). More...
|
|
static double | density (double alpha, double lambda, double x) |
| Computes the density function ( fgamma ) at \(x\).
|
|
static double | cdf (double alpha, double lambda, int d, double x) |
| Returns an approximation of the gamma distribution function with parameters \(\alpha\) = alpha and \(\lambda\) = lambda , whose density is given by ( fgamma ). More...
|
|
static double | cdf (double alpha, int d, double x) |
| Equivalent to cdf (alpha, 1.0, d, x) .
|
|
static double | barF (double alpha, double lambda, int d, double x) |
| Computes the complementary distribution function.
|
|
static double | barF (double alpha, int d, double x) |
| Same as barF(alpha, 1.0, d, x).
|
|
static double | inverseF (double alpha, double lambda, int d, double u) |
| Computes the inverse distribution function.
|
|
static double | inverseF (double alpha, int d, double u) |
| Same as inverseF(alpha, 1, d, u).
|
|
static double [] | getMLE (double[] x, int n) |
| Estimates the parameters \((\alpha,\lambda)\) of the gamma distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
|
|
static GammaDist | getInstanceFromMLE (double[] x, int n) |
| Creates a new instance of a gamma distribution with parameters \(\alpha\) and \(\lambda\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
|
|
static double | getMean (double alpha, double lambda) |
| Computes and returns the mean \(E[X] = \alpha/\lambda\) of the gamma distribution with parameters \(\alpha\) and \(\lambda\). More...
|
|
static double | getVariance (double alpha, double lambda) |
| Computes and returns the variance \(\mbox{Var}[X] = \alpha/\lambda^2\) of the gamma distribution with parameters \(\alpha\) and \(\lambda\). More...
|
|
static double | getStandardDeviation (double alpha, double lambda) |
| Computes and returns the standard deviation of the gamma distribution with parameters \(\alpha\) and \(\lambda\). More...
|
|
Extends the class GammaDist for the special case of the Erlang distribution with shape parameter \(k > 0\) and scale parameter \(\lambda> 0\).
This distribution is a special case of the gamma distribution for which the shape parameter \(k=\alpha\) is an integer.