SSJ  3.3.1
Stochastic Simulation in Java
Classes | Public Member Functions | Static Public Member Functions | List of all members

Extends the class ContinuousDistribution for the chi distribution [99]  (page 417) with shape parameter \(\nu > 0\), where the number of degrees of freedom \(\nu\) is a positive integer. More...

Inheritance diagram for ChiDist:
[legend]
Collaboration diagram for ChiDist:
[legend]

Public Member Functions

 ChiDist (int nu)
 Constructs a ChiDist object.
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
int getNu ()
 Returns the value of \(\nu\) for this object.
 
void setNu (int nu)
 Sets the value of \(\nu\) for this object.
 
double [] getParams ()
 Return a table containing parameters of the current distribution.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (int nu, double x)
 Computes the density function.
 
static double cdf (int nu, double x)
 Computes the distribution function by using the gamma distribution function.
 
static double barF (int nu, double x)
 Computes the complementary distribution.
 
static double inverseF (int nu, double u)
 Returns the inverse distribution function computed using the gamma inversion.
 
static double [] getMLE (double[] x, int n)
 Estimates the parameter \(\nu\) of the chi distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
 
static ChiDist getInstanceFromMLE (double[] x, int n)
 Creates a new instance of a chi distribution with parameter \(\nu\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
 
static double getMean (int nu)
 Computes and returns the mean

\[ E[X] = \frac{\sqrt{2} \Gamma( \frac{\nu+ 1}{2} )}{\Gamma(\frac{\nu}{2})} \]

of the chi distribution with parameter \(\nu\). More...

 
static double getVariance (int nu)
 Computes and returns the variance

\[ \mbox{Var}[X] = \frac{2 \Gamma(\frac{\nu}{2}) \Gamma(1 + \frac{\nu}{2}) - \Gamma^2(\frac{\nu+ 1}{2})}{\Gamma(\frac{\nu}{2})} \]

of the chi distribution with parameter \(\nu\). More...

 
static double getStandardDeviation (int nu)
 Computes and returns the standard deviation of the chi distribution with parameter \(\nu\). More...
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Extends the class ContinuousDistribution for the chi distribution [99]  (page 417) with shape parameter \(\nu > 0\), where the number of degrees of freedom \(\nu\) is a positive integer.

The density function is given by

\[ f (x) = \frac{e^{-x^2 /2} x^{\nu-1}}{2^{(\nu/2)-1}\Gamma(\nu/2)}, \qquad\mbox{ for } x > 0, \tag{Fchi} \]

where \(\Gamma(x)\) is the gamma function defined in ( Gamma ). The distribution function is

\[ F (x) = \frac{1}{\Gamma(\nu/2)} \int_0^{x^2/2} t^{\nu/2-1}e^{-t} dt. \]

It is equivalent to the gamma distribution function with parameters \(\alpha=\nu/2\) and \(\lambda=1\), evaluated at \(x^2/2\).

Member Function Documentation

◆ barF()

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ cdf()

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ getInstanceFromMLE()

static ChiDist getInstanceFromMLE ( double []  x,
int  n 
)
static

Creates a new instance of a chi distribution with parameter \(\nu\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).

Parameters
xthe list of observations to use to evaluate parameters
nthe number of observations to use to evaluate parameters

◆ getMean()

static double getMean ( int  nu)
static

Computes and returns the mean

\[ E[X] = \frac{\sqrt{2} \Gamma( \frac{\nu+ 1}{2} )}{\Gamma(\frac{\nu}{2})} \]

of the chi distribution with parameter \(\nu\).

Returns
the mean of the chi distribution \(E[X] = \sqrt{2}\Gamma((\nu+ 1) / 2) / \Gamma(\nu/ 2)\)

◆ getMLE()

static double [] getMLE ( double []  x,
int  n 
)
static

Estimates the parameter \(\nu\) of the chi distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).

The estimate is returned in element 0 of the returned array.

Parameters
xthe list of observations to use to evaluate parameters
nthe number of observations to use to evaluate parameters
Returns
returns the parameter [ \(\hat{\nu}\)]

◆ getStandardDeviation()

static double getStandardDeviation ( int  nu)
static

Computes and returns the standard deviation of the chi distribution with parameter \(\nu\).

Returns
the standard deviation of the chi distribution

◆ getVariance()

static double getVariance ( int  nu)
static

Computes and returns the variance

\[ \mbox{Var}[X] = \frac{2 \Gamma(\frac{\nu}{2}) \Gamma(1 + \frac{\nu}{2}) - \Gamma^2(\frac{\nu+ 1}{2})}{\Gamma(\frac{\nu}{2})} \]

of the chi distribution with parameter \(\nu\).

Returns
the variance of the chi distribution \(\mbox{Var}[X] = 2 [ \Gamma(\nu/ 2) \Gamma(1 + \nu/ 2) - \Gamma^2(1/2 (\nu+ 1)) ] / \Gamma(\nu/ 2)\)

◆ inverseF()

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.


The documentation for this class was generated from the following file: