SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class ContinuousDistribution for the chi distribution [99] (page 417) with shape parameter \(\nu > 0\), where the number of degrees of freedom \(\nu\) is a positive integer. More...
Public Member Functions | |
ChiDist (int nu) | |
Constructs a ChiDist object. | |
double | density (double x) |
double | cdf (double x) |
Returns the distribution function \(F(x)\). More... | |
double | barF (double x) |
Returns \(\bar{F}(x) = 1 - F(x)\). More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More... | |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
int | getNu () |
Returns the value of \(\nu\) for this object. | |
void | setNu (int nu) |
Sets the value of \(\nu\) for this object. | |
double [] | getParams () |
Return a table containing parameters of the current distribution. | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from ContinuousDistribution | |
abstract double | density (double x) |
Returns \(f(x)\), the density evaluated at \(x\). More... | |
double | barF (double x) |
Returns the complementary distribution function. More... | |
double | inverseBrent (double a, double b, double u, double tol) |
Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More... | |
double | inverseBisection (double u) |
Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(x = F^{-1}(u)\). More... | |
double | getMean () |
Returns the mean. More... | |
double | getVariance () |
Returns the variance. More... | |
double | getStandardDeviation () |
Returns the standard deviation. More... | |
double | getXinf () |
Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
double | getXsup () |
Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXinf (double xa) |
Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
void | setXsup (double xb) |
Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More... | |
Static Public Member Functions | |
static double | density (int nu, double x) |
Computes the density function. | |
static double | cdf (int nu, double x) |
Computes the distribution function by using the gamma distribution function. | |
static double | barF (int nu, double x) |
Computes the complementary distribution. | |
static double | inverseF (int nu, double u) |
Returns the inverse distribution function computed using the gamma inversion. | |
static double [] | getMLE (double[] x, int n) |
Estimates the parameter \(\nu\) of the chi distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static ChiDist | getInstanceFromMLE (double[] x, int n) |
Creates a new instance of a chi distribution with parameter \(\nu\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static double | getMean (int nu) |
Computes and returns the mean \[ E[X] = \frac{\sqrt{2} \Gamma( \frac{\nu+ 1}{2} )}{\Gamma(\frac{\nu}{2})} \] of the chi distribution with parameter \(\nu\). More... | |
static double | getVariance (int nu) |
Computes and returns the variance \[ \mbox{Var}[X] = \frac{2 \Gamma(\frac{\nu}{2}) \Gamma(1 + \frac{\nu}{2}) - \Gamma^2(\frac{\nu+ 1}{2})}{\Gamma(\frac{\nu}{2})} \] of the chi distribution with parameter \(\nu\). More... | |
static double | getStandardDeviation (int nu) |
Computes and returns the standard deviation of the chi distribution with parameter \(\nu\). More... | |
Additional Inherited Members | |
Public Attributes inherited from ContinuousDistribution | |
int | decPrec = 15 |
Protected Attributes inherited from ContinuousDistribution | |
double | supportA = Double.NEGATIVE_INFINITY |
double | supportB = Double.POSITIVE_INFINITY |
Static Protected Attributes inherited from ContinuousDistribution | |
static final double | XBIG = 100.0 |
static final double | XBIGM = 1000.0 |
static final double [] | EPSARRAY |
Extends the class ContinuousDistribution for the chi distribution [99] (page 417) with shape parameter \(\nu > 0\), where the number of degrees of freedom \(\nu\) is a positive integer.
The density function is given by
\[ f (x) = \frac{e^{-x^2 /2} x^{\nu-1}}{2^{(\nu/2)-1}\Gamma(\nu/2)}, \qquad\mbox{ for } x > 0, \tag{Fchi} \]
where \(\Gamma(x)\) is the gamma function defined in ( Gamma ). The distribution function is
\[ F (x) = \frac{1}{\Gamma(\nu/2)} \int_0^{x^2/2} t^{\nu/2-1}e^{-t} dt. \]
It is equivalent to the gamma distribution function with parameters \(\alpha=\nu/2\) and \(\lambda=1\), evaluated at \(x^2/2\).
double barF | ( | double | x | ) |
Returns \(\bar{F}(x) = 1 - F(x)\).
x | value at which the complementary distribution function is evaluated |
x
Implements Distribution.
double cdf | ( | double | x | ) |
Returns the distribution function \(F(x)\).
x | value at which the distribution function is evaluated |
x
Implements Distribution.
|
static |
Creates a new instance of a chi distribution with parameter \(\nu\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
|
static |
Computes and returns the mean
\[ E[X] = \frac{\sqrt{2} \Gamma( \frac{\nu+ 1}{2} )}{\Gamma(\frac{\nu}{2})} \]
of the chi distribution with parameter \(\nu\).
|
static |
Estimates the parameter \(\nu\) of the chi distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
The estimate is returned in element 0 of the returned array.
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
|
static |
Computes and returns the standard deviation of the chi distribution with parameter \(\nu\).
|
static |
Computes and returns the variance
\[ \mbox{Var}[X] = \frac{2 \Gamma(\frac{\nu}{2}) \Gamma(1 + \frac{\nu}{2}) - \Gamma^2(\frac{\nu+ 1}{2})}{\Gamma(\frac{\nu}{2})} \]
of the chi distribution with parameter \(\nu\).
double inverseF | ( | double | u | ) |
Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).
u | value in the interval \((0,1)\) for which the inverse distribution function is evaluated |
u
Implements Distribution.