|
|
| BetaSymmetricalDist (double alpha) |
| | Constructs a BetaSymmetricalDist object with parameters \(\alpha= \beta=\) alpha, over the unit interval \((0,1)\).
|
| |
|
| BetaSymmetricalDist (double alpha, int d) |
| | Same as BetaSymmetricalDist (alpha), but using approximations of roughly d decimal digits of precision when computing the distribution, complementary distribution, and inverse functions.
|
| |
| double | cdf (double x) |
| | Returns the distribution function \(F(x)\). More...
|
| |
| double | barF (double x) |
| | Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
| |
| double | inverseF (double u) |
| | Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
| |
|
double | getMean () |
| | Returns the mean of the distribution function.
|
| |
|
double | getVariance () |
| | Returns the variance of the distribution function.
|
| |
|
double | getStandardDeviation () |
| | Returns the standard deviation of the distribution function.
|
| |
|
void | setParams (double alpha, double beta, double a, double b, int d) |
| |
|
double [] | getParams () |
| | Return a table containing the parameter of the current distribution.
|
| |
|
String | toString () |
| | Returns a String containing information about the current distribution.
|
| |
|
| BetaDist (double alpha, double beta) |
| | Constructs a BetaDist object with parameters \(\alpha=\) alpha, \(\beta=\) beta and default domain \([0,1]\).
|
| |
|
| BetaDist (double alpha, double beta, double a, double b) |
| | Constructs a BetaDist object with parameters \(\alpha=\) alpha, \(\beta=\) beta and domain \([\)a \(,\) b \(]\).
|
| |
|
| BetaDist (double alpha, double beta, int d) |
| |
|
| BetaDist (double alpha, double beta, double a, double b, int d) |
| |
|
double | density (double x) |
| |
| double | cdf (double x) |
| | Returns the distribution function \(F(x)\). More...
|
| |
| double | barF (double x) |
| | Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
| |
| double | inverseF (double u) |
| | Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
| |
|
double | getMean () |
| | Returns the mean of the distribution function.
|
| |
|
double | getVariance () |
| | Returns the variance of the distribution function.
|
| |
|
double | getStandardDeviation () |
| | Returns the standard deviation of the distribution function.
|
| |
|
double | getAlpha () |
| | Returns the parameter \(\alpha\) of this object.
|
| |
|
double | getBeta () |
| | Returns the parameter \(\beta\) of this object.
|
| |
|
double | getA () |
| | Returns the parameter \(a\) of this object.
|
| |
|
double | getB () |
| | Returns the parameter \(b\) of this object.
|
| |
|
void | setParams (double alpha, double beta, double a, double b, int d) |
| |
| void | setParams (double alpha, double beta, double a, double b) |
| | Sets the parameters of the current distribution. More...
|
| |
|
double [] | getParams () |
| | Return an array containing the parameters of the current distribution as [ \(\alpha\), \(\beta\), \(a\), \(b\)].
|
| |
|
String | toString () |
| | Returns a String containing information about the current distribution.
|
| |
| abstract double | density (double x) |
| | Returns \(f(x)\), the density evaluated at \(x\). More...
|
| |
| double | barF (double x) |
| | Returns the complementary distribution function. More...
|
| |
| double | inverseBrent (double a, double b, double u, double tol) |
| | Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
| |
| double | inverseBisection (double u) |
| | Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
| |
| double | inverseF (double u) |
| | Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
| |
| double | getMean () |
| | Returns the mean. More...
|
| |
| double | getVariance () |
| | Returns the variance. More...
|
| |
| double | getStandardDeviation () |
| | Returns the standard deviation. More...
|
| |
| double | getXinf () |
| | Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
| |
| double | getXsup () |
| | Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
| |
| void | setXinf (double xa) |
| | Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
| |
| void | setXsup (double xb) |
| | Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
| |
|
|
static double | density (double alpha, double x) |
| | Returns the density evaluated at \(x\).
|
| |
|
static double | cdf (double alpha, int d, double x) |
| | Same as cdf(alpha, alpha, d, x).
|
| |
|
static double | barF (double alpha, int d, double x) |
| | Returns the complementary distribution function.
|
| |
| static double | inverseF (double alpha, double u) |
| | Returns the inverse distribution function evaluated at \(u\), for the symmetrical beta distribution over the interval \([0,1]\), with shape parameters \(0 < \alpha= \beta\) = alpha. More...
|
| |
| static double [] | getMLE (double[] x, int n) |
| | Estimates the parameter \(\alpha\) of the symmetrical beta distribution over the interval [0, 1] using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
|
| |
| static BetaSymmetricalDist | getInstanceFromMLE (double[] x, int n) |
| | Creates a new instance of a symmetrical beta distribution with parameter \(\alpha\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
|
| |
| static double | getMean (double alpha) |
| | Computes and returns the mean \(E[X] = 1/2\) of the symmetrical beta distribution with parameter \(\alpha\). More...
|
| |
| static double | getVariance (double alpha) |
| | Computes and returns the variance, \(\mbox{Var}[X] = 1/(8\alpha+ 4)\), of the symmetrical beta distribution with parameter \(\alpha\). More...
|
| |
| static double | getStandardDeviation (double alpha) |
| | Computes and returns the standard deviation of the symmetrical beta distribution with parameter \(\alpha\). More...
|
| |
|
static double | density (double alpha, double beta, double x) |
| | Same as density(alpha, beta, 0, 1, x).
|
| |
|
static double | density (double alpha, double beta, double a, double b, double x) |
| | Computes the density function of the beta distribution.
|
| |
|
static double | cdf (double alpha, double beta, int d, double x) |
| |
|
static double | cdf (double alpha, double beta, double a, double b, int d, double x) |
| |
|
static double | barF (double alpha, double beta, int d, double x) |
| |
|
static double | barF (double alpha, double beta, double a, double b, int d, double x) |
| |
|
static double | cdf (double alpha, double beta, double x) |
| | Same as cdf(alpha, beta, 0, 1, x).
|
| |
| static double | cdf (double alpha, double beta, double a, double b, double x) |
| | Computes the distribution function. More...
|
| |
|
static double | barF (double alpha, double beta, double x) |
| | Same as barF(alpha, beta, 0, 1, x).
|
| |
|
static double | barF (double alpha, double beta, double a, double b, double x) |
| | Computes the complementary distribution function.
|
| |
|
static double | inverseF (double alpha, double beta, int d, double u) |
| |
|
static double | inverseF (double alpha, double beta, double u) |
| | Same as inverseF(alpha, beta, 0, 1, u).
|
| |
|
static double | inverseF (double alpha, double beta, double a, double b, int d, double u) |
| |
| static double | inverseF (double alpha, double beta, double a, double b, double u) |
| | Returns the inverse beta distribution function using the algorithm implemented in [183] . More...
|
| |
| static double [] | getMLE (double[] x, int n) |
| | Estimates the parameters \((\alpha,\beta)\) of the beta distribution over the interval \([0,1]\) using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1,…, n-1\). More...
|
| |
| static BetaDist | getInstanceFromMLE (double[] x, int n) |
| | Creates a new instance of a beta distribution with parameters \(\alpha\) and \(\beta\) over the interval \([0,1]\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More...
|
| |
| static double | getMean (double alpha, double beta) |
| | Computes and returns the mean \(E[X] = \alpha/ (\alpha+ \beta)\) of the beta distribution with parameters \(\alpha\) and \(\beta\), over the interval \([0, 1]\). More...
|
| |
| static double | getMean (double alpha, double beta, double a, double b) |
| | Computes and returns the mean \(E[X] = (b\alpha+ a\beta)/ (\alpha+ \beta)\) of the beta distribution with parameters \(\alpha\) and \(\beta\) over the interval \([a, b]\). More...
|
| |
| static double | getVariance (double alpha, double beta) |
| | Computes and returns the variance \(\mbox{Var}[X] = \frac{\alpha\beta}{(\alpha+ \beta)^2 (\alpha+ \beta+ 1)}\) of the beta distribution with parameters \(\alpha\) and \(\beta\), over the interval \([0, 1]\). More...
|
| |
| static double | getVariance (double alpha, double beta, double a, double b) |
| | Computes and returns the variance \(\mbox{Var}[X] = \frac{\alpha\beta(b-a)^2}{(\alpha+ \beta)^2 (\alpha+ \beta+ 1)}\) of the beta distribution with parameters \(\alpha\) and \(\beta\), over the interval \([a, b]\). More...
|
| |
| static double | getStandardDeviation (double alpha, double beta) |
| | Computes the standard deviation of the beta distribution with parameters \(\alpha\) and \(\beta\), over the interval \([0, 1]\). More...
|
| |
| static double | getStandardDeviation (double alpha, double beta, double a, double b) |
| | Computes the standard deviation of the beta distribution with parameters \(\alpha\) and \(\beta\), over the interval \([a, b]\). More...
|
| |
Specializes the class BetaDist to the case of a symmetrical beta distribution over the interval \([0,1]\), with shape parameters \(\alpha= \beta\).
Faster methods are implemented here for this special case [134] . Because of the symmetry around 1/2, four series are used to compute the cdf, two around \(x = 0\) and two around \(x = 1/2\).