LatNet Builder Manual  2.0.1-11
Software Package for Constructing Highly Uniform Point Sets
LatBuilder::Functor::IB Class Reference

One-dimensional merit function for the interlaced \(\mathcal B_{d, \gamma, (2)}\) discrepancy in base 2 [10]. More...

#include <IB.h>

Public Types

typedef Real value_type
 
typedef Real result_type
 

Public Member Functions

 IB (unsigned int interlacingFactor)
 Constructor. More...
 
unsigned int interlacingFactor () const
 
bool symmetric () const
 
template<typename MODULUS >
result_type operator() (const value_type &x, MODULUS n=0) const
 Returns the one-dimensional function evaluated at x.
 
std::string name () const
 

Static Public Member Functions

static constexpr Compress suggestedCompression ()
 

Detailed Description

One-dimensional merit function for the interlaced \(\mathcal B_{d, \gamma, (2)}\) discrepancy in base 2 [10].

This merit function is defined as:

\[ \phi_{\d, (2)}(x) = \frac{2^{d-1}(1 - 2^{(d -1) \lfloor \log_2(x) \rfloor} (2^{d} -1))}{(2^{d - 1} -1) } \]

with \( \min(\alpha, d) > 1 \) where we set \(2^{\lfloor \log_2(0) \rfloor} = 0\).

Constructor & Destructor Documentation

◆ IB()

LatBuilder::Functor::IB::IB ( unsigned int  interlacingFactor)
inline

Constructor.

Parameters
interlacingFactorValue of \(d\).

The documentation for this class was generated from the following file: