LatNet Builder Manual
2.0.1-11
Software Package for Constructing Highly Uniform Point Sets
|
One-dimensional merit function for the interlaced \(\mathcal B_{d, \gamma, (2)}\) discrepancy in base 2 [10]. More...
#include <IB.h>
Public Types | |
typedef Real | value_type |
typedef Real | result_type |
Public Member Functions | |
IB (unsigned int interlacingFactor) | |
Constructor. More... | |
unsigned int | interlacingFactor () const |
bool | symmetric () const |
template<typename MODULUS > | |
result_type | operator() (const value_type &x, MODULUS n=0) const |
Returns the one-dimensional function evaluated at x . | |
std::string | name () const |
Static Public Member Functions | |
static constexpr Compress | suggestedCompression () |
One-dimensional merit function for the interlaced \(\mathcal B_{d, \gamma, (2)}\) discrepancy in base 2 [10].
This merit function is defined as:
\[ \phi_{\d, (2)}(x) = \frac{2^{d-1}(1 - 2^{(d -1) \lfloor \log_2(x) \rfloor} (2^{d} -1))}{(2^{d - 1} -1) } \]
with \( \min(\alpha, d) > 1 \) where we set \(2^{\lfloor \log_2(0) \rfloor} = 0\).
|
inline |
Constructor.
interlacingFactor | Value of \(d\). |