LatNet Builder Manual
2.0.1-11
Software Package for Constructing Highly Uniform Point Sets
|
L. Afflerbach and H. Grothe. Calculation of Minkowski-reduced lattice bases. Computing, 35:269–276, 1985.
H. Cohen, editor. A Course in Computational Number Theory. Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.
J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften 290. Springer-Verlag, New York, 3rd edition, 1999.
R. Cools, F. Y. Kuo, and D. Nuyens. Constructing embedded lattice rules for multivariate integration. SIAM Journal on Scientific Computing, 28(16):2162–2188, 2006.
J. Dick and M. Matsumoto. On the fast computation of the weight enumerator polynomial and the $t$ value of digital nets over finite Abelian groups. SIAM Journal on Discrete Mathematics, 27(3):1335–1359, 2013.
J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, U.K., 2010.
J. Dick, F. Pillichshammer, and B. J. Waterhouse. The construction of good extensible rank-1 lattices. Mathematics of Computation, 77(264):2345–2373, 2008.
Josef Dick, Peter Kritzer, Gunther Leobacher, and Friedrich Pillichshammer. A reduced fast component-by-component construction of lattice points for integration in weighted spaces with fast decreasing weights. Journal of Computational and Applied Mathematics, 276:1 – 15, 2015.
U. Dieter. How to calculate shortest vectors in a lattice. Mathematics of Computation, 29(131):827–833, 1975.
Takashi Goda. Good interlaced polynomial lattice rules for numerical integration in weighted walsh spaces. 285, 06 2013.
F. J. Hickernell and H. Niederreiter. The existence of good extensible rank-1 lattices. Journal of Complexity, 19(3):286–300, 2003.
F. J. Hickernell, H. S. Hong, P. L'Ecuyer, and C. Lemieux. Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM Journal on Scientific Computing, 22(3):1117–1138, 2001.
F. J. Hickernell. A generalized discrepancy and quadrature error bound. Mathematics of Computation, 67(221):299–322, 1998.
S. Joe and F. Y. Kuo. Constructing Sobol sequences with better two-dimensional projections. SIAM Journal on Scientific Computing, 30(5):2635–2654, 2008.
S. Joe and I. H. Sloan. On computing the lattice rule criterion R. Mathematics of Computation, 59:557–568, 1992.
P. L'Ecuyer and R. Couture. An implementation of the lattice and spectral tests for multiple recursive linear random number generators. INFORMS Journal on Computing, 9(2):206–217, 1997.
P. L'Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management Science, 46(9):1214–1235, 2000.
P. L'Ecuyer and D. Munger. Algorithm 958: Lattice builder: A general software tool for constructing rank-1 lattice rules. ACM Trans. on Mathematical Software, 42(2):Article 15, 2016.
P. L'Ecuyer. Tables of maximally equidistributed combined LFSR generators. Mathematics of Computation, 68(225):261–269, 1999.
P. L'Ecuyer. Random number generation. In J. E. Gentle, W. Haerdle, and Y. Mori, editors, Handbook of Computational Statistics, pages 35–70. Springer-Verlag, Berlin, 2004. Chapter II.2.
C. Lemieux and P. L'Ecuyer. Randomized polynomial lattice rules for multivariate integration and simulation. SIAM Journal on Scientific Computing, 24(5):1768–1789, 2003.
A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Ann., 261:515–534, 1982.
G. Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences of the United States of America, 60:25–28, 1968.
H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM CBMS-NSF Reg. Conf. Series in Applied Mathematics. SIAM, 1992.
H. Niederreiter. The existence of good extensible polynomial lattice rules. Monatshefte für Mathematik, 139:297–307, 2003.
Dirk Nuyens. The construction of good lattice rules and polynomial lattice rules. In Peter Kritzer, Harald Niederreiter, Friedrich Pillichshammer, and Arne Winterhof, editors, Uniform Distribution and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications, pages 223–255. De Gruyter, 2014.
W. Ch. Schmid. The exact quality parameter of nets derived from Sobol' and Niederreiter sequences. Recent Advances in Numerical Methods and Applications, pages 287–295, 1999.
C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In L. Budach, editor, Fundamentals of Computation Theory: 8th International Conference, pages 68–85, Berlin, Heidelberg, 1991. Springer-Verlag.
V. Sinescu and S. Joe. Good lattice rules with a composite number of points based on the product weighted star discrepancy. In A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 645–658. Springer, 2008.
V. Sinescu and P. L'Ecuyer. Existence and contruction of shifted lattice rules with an arbitrary number of points and bounded worst-case error for general weights. Journal of Complexity, 27(5):449–465, 2011.
V. Sinescu and P. L'Ecuyer. Variance bounds and existence results for randomly shifted lattice rules. Journal of Computational and Applied Mathematics, 236:3296–3307, 2012.
I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press, Oxford, 1994.
I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1994.