LatNet Builder Manual 2.1.3-6
Software Package for Constructing Highly Uniform Point Sets
Loading...
Searching...
No Matches
LatBuilder::Functor::IAAlpha Class Reference

One-dimensional merit function for the interlaced \(\mathcal B_{\alpha, d, \gamma, (1)}\) discrepancy in base 2 [rGOD13a]. More...

#include <IAAlpha.h>

Public Types

typedef Real value_type
typedef Real result_type

Public Member Functions

 IAAlpha (unsigned int alpha, unsigned int interlacingFactor)
 Constructor.
unsigned int alpha () const
unsigned int interlacingFactor () const
bool symmetric () const
template<typename MODULUS>
result_type operator() (const value_type &x, MODULUS n=0) const
 Returns the one-dimensional function evaluated at x.
std::string name () const

Static Public Member Functions

static constexpr Compress suggestedCompression ()

Detailed Description

One-dimensional merit function for the interlaced \(\mathcal B_{\alpha, d, \gamma, (1)}\) discrepancy in base 2 [rGOD13a].

This merit function is defined as:

\[ \phi_{\alpha, d, (1)}(x) = \frac{1 - 2^{(\min(\alpha, d) -1) \lfloor \log_2(x) \rfloor} (2^{\min(\alpha, d)} -1)}{2^{(\alpha+2)/2} (2^{\min(\alpha, d) - 1} -1) } \]

with \( \min(\alpha, d) > 1 \) where we set \(2^{\lfloor \log_2(0) \rfloor} = 0\).

Constructor & Destructor Documentation

◆ IAAlpha()

LatBuilder::Functor::IAAlpha::IAAlpha ( unsigned int alpha,
unsigned int interlacingFactor )
inline

Constructor.

Parameters
alphaValue of \(\alpha\).
interlacingFactorValue of \(d\).

References LatBuilder::intPow().


The documentation for this class was generated from the following file:
  • include/latbuilder/Functor/IAAlpha.h