| LatNet Builder Manual 2.1.3-6
    Software Package for Constructing Highly Uniform Point Sets | 
One-dimensional merit function for the interlaced \(\mathcal B_{\alpha, d, \gamma, (1)}\) discrepancy in base 2 [rGOD13a]. More...
#include <IAAlpha.h>
| Public Types | |
| typedef Real | value_type | 
| typedef Real | result_type | 
| Public Member Functions | |
| IAAlpha (unsigned int alpha, unsigned int interlacingFactor) | |
| Constructor. | |
| unsigned int | alpha () const | 
| unsigned int | interlacingFactor () const | 
| bool | symmetric () const | 
| template<typename MODULUS> | |
| result_type | operator() (const value_type &x, MODULUS n=0) const | 
| Returns the one-dimensional function evaluated at x. | |
| std::string | name () const | 
| Static Public Member Functions | |
| static constexpr Compress | suggestedCompression () | 
One-dimensional merit function for the interlaced \(\mathcal B_{\alpha, d, \gamma, (1)}\) discrepancy in base 2 [rGOD13a].
This merit function is defined as:
\[ \phi_{\alpha, d, (1)}(x) = \frac{1 - 2^{(\min(\alpha, d) -1) \lfloor \log_2(x) \rfloor} (2^{\min(\alpha, d)} -1)}{2^{(\alpha+2)/2} (2^{\min(\alpha, d) - 1} -1) } \]
with \( \min(\alpha, d) > 1 \) where we set \(2^{\lfloor \log_2(0) \rfloor} = 0\).
| 
 | inline | 
Constructor.
| alpha | Value of \(\alpha\). | 
| interlacingFactor | Value of \(d\). | 
References LatBuilder::intPow().