LatNet Builder Manual  2.0.1-11
Software Package for Constructing Highly Uniform Point Sets
Num.h File Reference

This module implements a few useful mathematical functions. More...

#include <cstdint>

Namespaces

 LatticeTester
 Lattice namespace.
 

Functions

std::int64_t LatticeTester::lFactorial (int t)
 Calculates \(t!\), the factorial of \(t\).
 
double LatticeTester::Digamma (double x)
 Returns the value of the logarithmic derivative of the Gamma function \(\psi(x) = \Gamma'(x) / \Gamma(x)\).
 
double LatticeTester::BernoulliPoly (int n, double x)
 Evaluates the Bernoulli polynomial \(B_n(x)\) of degree \(n\) at \(x\). More...
 
double LatticeTester::Harmonic (std::int64_t n)
 Computes the \(n\)-th harmonic number \(H_n = \sum_{j=1}^n 1/j\).
 
double LatticeTester::Harmonic2 (std::int64_t n)
 Computes the sum

\[ \sideset{}{'}\sum_{-n/2<j\le n/2}\; \frac 1{|j|}, \]

where the symbol \(\sum^\prime\) means that the term with \(j=0\) is excluded from the sum.

 
double LatticeTester::FourierC1 (double x, std::int64_t n)
 Computes and returns the value of the series (see [15])

\[ S(x, n) = \sum_{j=1}^{n} \frac{\cos(2\pi j x)}{j}. \]

Restrictions: \(n>0\) and \(0 \le x \le 1\).

 
double LatticeTester::FourierE1 (double x, std::int64_t n)
 Computes and returns the value of the series

\[ G(x, n) = \sideset{}{'}\sum_{-n/2<h\le n/2}\; \frac{e^{2\pi i h x}}{|h|}, \]

where the symbol \(\sum^\prime\) means that the term with \(h=0\) is excluded from the sum, and assuming that the imaginary part of \(G(x, n)\) vanishes. More...

 

Detailed Description

This module implements a few useful mathematical functions.