A multivariate Brownian motion process \{\mathbf{X}(t) : t \geq0 \} sampled via bridge sampling. More...
Public Member Functions | |
MultivariateBrownianMotionBridge (int c, double[] x0, double[] mu, double[] sigma, double[][] corrZ, RandomStream stream) | |
Constructs a new MultivariateBrownianMotionBridge with parameters \boldsymbol{\mu}= mu , \boldsymbol{\sigma}= sigma , correlation matrix \mathbf{R}_z = corrZ , and initial value \mathbf{X}(t_0) = x0 . More... | |
MultivariateBrownianMotionBridge (int c, double[] x0, double[] mu, double[] sigma, double[][] corrZ, NormalGen gen) | |
Constructs a new MultivariateBrownianMotionBridge with parameters \boldsymbol{\mu}= mu , \boldsymbol{\sigma}= sigma , correlation matrix \mathbf{R}_z = corrZ , and initial value \mathbf{X}(t_0) = x0 . More... | |
double [] | generatePath () |
void | resetStartProcess () |
double [] | nextObservationVector () |
void | nextObservationVector (double[] obs) |
![]() | |
MultivariateBrownianMotion (int c, double[] x0, double[] mu, double[] sigma, double[][] corrZ, RandomStream stream) | |
Constructs a new MultivariateBrownianMotion with parameters \boldsymbol{\mu}= \mathtt{mu}, \boldsymbol{\sigma}= \mathtt{sigma}, correlation matrix \mathbf{R}_z = \mathtt{corrZ}, and initial value \mathbf{X}(t_0) = \mathtt{x0}. More... | |
MultivariateBrownianMotion (int c, double[] x0, double[] mu, double[] sigma, double[][] corrZ, NormalGen gen) | |
Constructs a new MultivariateBrownianMotion with parameters \boldsymbol{\mu}= \mathtt{mu}, \boldsymbol{\sigma}= \mathtt{sigma}, correlation matrix \mathbf{R}_z = \mathtt{corrZ}, and initial value \mathbf{X}(t_0) = \mathtt{x0}. More... | |
void | nextObservationVector (double[] obs) |
Generates and returns in obs the next observation \mathbf{X}(t_j) of the multivariate stochastic process. More... | |
double [] | nextObservationVector () |
Generates and returns the next observation \mathbf{X}(t_j) of the multivariate stochastic process in a vector created automatically. More... | |
double [] | nextObservationVector (double nextTime, double[] obs) |
Generates and returns the vector of next observations, at time t_{j+1} = \mathtt{nextTime}, using the previous observation time t_j defined earlier (either by this method or by setObservationTimes ), as well as the value of the previous observation X(t_j). More... | |
double [] | nextObservationVector (double x[], double dt) |
Generates an observation (vector) of the process in dt time units, assuming that the process has (vector) value x at the current time. More... | |
double [] | generatePath () |
double [] | generatePath (double[] uniform01) |
Same as generatePath() but requires a vector of uniform random numbers which are used to generate the path. | |
double [] | generatePath (RandomStream stream) |
void | setParams (int c, double x0[], double mu[], double sigma[], double corrZ[][]) |
Sets the dimension c = \mathtt{c}, the initial value \mathbf{X}(t_0) = \mathtt{x0}, the average \mu= \mathtt{mu}, the volatility \sigma= \mathtt{sigma} and the correlation matrix to corrZ . More... | |
void | setParams (double x0[], double mu[], double sigma[]) |
Sets the dimension c = \mathtt{c}, the initial value \mathbf{X}(t_0) = \mathtt{x0}, the average \mu= \mathtt{mu}, the volatility \sigma= \mathtt{sigma}. More... | |
void | setStream (RandomStream stream) |
Resets the random stream of the normal generator to stream . | |
RandomStream | getStream () |
Returns the random stream of the normal generator. | |
NormalGen | getGen () |
Returns the normal random variate generator used. More... | |
double [] | getMu () |
Returns the vector mu . | |
![]() | |
abstract double [] | generatePath () |
Generates, returns, and saves the sample path. More... | |
void | getSubpath (double[] subpath, int[] pathIndices) |
Returns in subpath the values of the process at a subset of the observation times, specified as the times t_j whose indices. More... | |
void | setObservationTimes (double[] t, int d) |
Sets the observation times of the process to a copy of t , with. More... | |
void | getObservation (int j, double[] obs) |
Returns \mathbf{X}(t_j) in the c-dimensional vector obs . | |
double | getObservation (int j, int i) |
Returns X_i(t_j) from the current sample path. | |
abstract void | nextObservationVector (double[] obs) |
Generates and returns in obs the next observation. More... | |
void | getCurrentObservation (double[] obs) |
Returns the value of the last generated observation. More... | |
double [] | getX0 (double[] x0) |
Returns in x0 the initial value \mathbf{X}(t_0) for this process. | |
int | getDimension () |
Returns the dimension of \mathbf{X}. | |
![]() | |
void | setObservationTimes (double[] T, int d) |
Sets the observation times of the process to a copy of T , with. More... | |
void | setObservationTimes (double delta, int d) |
Sets equidistant observation times at t_j = j\delta, for. More... | |
double [] | getObservationTimes () |
Returns a reference to the array that contains the observation times. More... | |
int | getNumObservationTimes () |
Returns the number d of observation times, excluding the time t_0. | |
abstract double [] | generatePath () |
Generates, returns, and saves the sample path \{X(t_0), X(t_1), \dots, X(t_d)\}. More... | |
double [] | generatePath (RandomStream stream) |
Same as generatePath() , but first resets the stream to stream . | |
double [] | getPath () |
Returns a reference to the last generated sample path \{X(t_0), ... , X(t_d)\}. More... | |
void | getSubpath (double[] subpath, int[] pathIndices) |
Returns in subpath the values of the process at a subset of the observation times, specified as the times t_j whose indices. More... | |
double | getObservation (int j) |
Returns X(t_j) from the current sample path. More... | |
void | resetStartProcess () |
Resets the observation counter to its initial value j=0, so that the current observation X(t_j) becomes X(t_0). More... | |
boolean | hasNextObservation () |
Returns true if j<d, where j is the number of observations of the current sample path generated since the last call to resetStartProcess. More... | |
double | nextObservation () |
Generates and returns the next observation X(t_j) of the stochastic process. More... | |
int | getCurrentObservationIndex () |
Returns the value of the index j corresponding to the time. More... | |
double | getCurrentObservation () |
Returns the value of the last generated observation X(t_j). | |
double | getX0 () |
Returns the initial value X(t_0) for this process. | |
void | setX0 (double s0) |
Sets the initial value X(t_0) for this process to s0 , and reinitializes. | |
abstract void | setStream (RandomStream stream) |
Resets the random stream of the underlying generator to stream . | |
abstract RandomStream | getStream () |
Returns the random stream of the underlying generator. | |
int [] | getArrayMappingCounterToIndex () |
Returns a reference to an array that maps an integer k to i_k, the index of the observation S(t_{i_k}) corresponding to the k-th observation to be generated for a sample path of this process. More... | |
Protected Member Functions | |
void | init () |
![]() | |
void | init () |
void | initCovZCholDecomp () |
void | initCovZ () |
![]() | |
void | init () |
void | createPath () |
![]() | |
void | init () |
Protected Attributes | |
double [] | z |
int | bridgeCounter = -1 |
double [] | wMuDt |
int [] | wIndexList |
![]() | |
NormalGen | gen |
double [] | mu |
double [] | sigma |
double [][] | corrZ |
DoubleMatrix2D | covZ |
DoubleMatrix2D | covZCholDecomp |
CholeskyDecomposition | decomp |
boolean | covZiSCholDecomp |
double [] | dt |
![]() | |
double [] | x0 |
int | c = 1 |
![]() | |
boolean | observationTimesSet = false |
double | x0 = 0.0 |
int | d = -1 |
int | observationIndex = 0 |
int | observationCounter = 0 |
double [] | t |
double [] | path |
int [] | observationIndexFromCounter |
Package Attributes | |
double [] | covZCholDecompz |
double [] | wSqrtDt |
int [] | ptIndex |
![]() | |
double [] | sqrdt |
A multivariate Brownian motion process \{\mathbf{X}(t) : t \geq0 \} sampled via bridge sampling.
We use a Cholesky decomposition of the relevant covariance matrix to generate the next c-dimensional vector at each step of the bridge sampling algorithm. For this, we construct the same matrix \boldsymbol{\Sigma} as in MultivariateBrownianMotion and we compute its Cholesky decomposition \boldsymbol{\Sigma}= B B^{\mathsf{t}}.
MultivariateBrownianMotionBridge | ( | int | c, |
double [] | x0, | ||
double [] | mu, | ||
double [] | sigma, | ||
double | corrZ[][], | ||
RandomStream | stream | ||
) |
Constructs a new MultivariateBrownianMotionBridge
with parameters \boldsymbol{\mu}= mu
, \boldsymbol{\sigma}= sigma
, correlation matrix \mathbf{R}_z = corrZ
, and initial value \mathbf{X}(t_0) = x0
.
The normal variates Z_j in are generated by inversion using the umontreal.ssj.rng.RandomStream stream
.
MultivariateBrownianMotionBridge | ( | int | c, |
double [] | x0, | ||
double [] | mu, | ||
double [] | sigma, | ||
double | corrZ[][], | ||
NormalGen | gen | ||
) |
Constructs a new MultivariateBrownianMotionBridge
with parameters \boldsymbol{\mu}= mu
, \boldsymbol{\sigma}= sigma
, correlation matrix \mathbf{R}_z = corrZ
, and initial value \mathbf{X}(t_0) = x0
.
The normal variates Z_j in are generated by gen
.