SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Protected Attributes | List of all members
InverseGaussianProcessPCA Class Reference

Approximates a principal component analysis (PCA) decomposition of the InverseGaussianProcess. More...

Inheritance diagram for InverseGaussianProcessPCA:
[legend]
Collaboration diagram for InverseGaussianProcessPCA:
[legend]

Public Member Functions

 InverseGaussianProcessPCA (double s0, double delta, double gamma, RandomStream stream)
 Constructs a new InverseGaussianProcessPCA. More...
 
double [] generatePath ()
 
double [] generatePath (double[] uniforms01)
 Instead of using the internal stream to generate the path, uses an array of uniforms \(U[0,1)\). More...
 
double nextObservation ()
 Not implementable for PCA.
 
void setObservationTimes (double t[], int d)
 Sets the observation times of both the InverseGaussianProcessPCA and the inner
BrownianMotionPCA.
 
RandomStream getStream ()
 
void setStream (RandomStream stream)
 
void setBrownianMotionPCA (BrownianMotionPCA bmPCA)
 Sets the brownian motion PCA. More...
 
BrownianMotion getBrownianMotionPCA ()
 Returns the BrownianMotionPCA.
 
- Public Member Functions inherited from InverseGaussianProcess
 InverseGaussianProcess (double s0, double delta, double gamma, RandomStream stream)
 Constructs a new InverseGaussianProcess. More...
 
double [] generatePath ()
 
double [] generatePath (double[] uniforms01)
 Instead of using the internal stream to generate the path, uses an array of uniforms \(U[0,1)\). More...
 
double [] generatePath (double[] uniforms01, double[] uniforms01b)
 This method does not work for this class, but will be useful for the subclasses that require two streams.
 
double nextObservation ()
 
void setParams (double delta, double gamma)
 Sets the parameters.
 
double getDelta ()
 Returns \(\delta\).
 
double getGamma ()
 Returns \(\gamma\).
 
double getAnalyticAverage (double time)
 Returns the analytic average which is \(\delta t/ \gamma\), with \(t=\) time.
 
double getAnalyticVariance (double time)
 Returns the analytic variance which is \((\delta t)^2\), with \(t=\) time.
 
RandomStream getStream ()
 
void setStream (RandomStream stream)
 
int getNumberOfRandomStreams ()
 Returns the number of random streams of this process. More...
 
- Public Member Functions inherited from StochasticProcess
void setObservationTimes (double[] T, int d)
 Sets the observation times of the process to a copy of T, with. More...
 
void setObservationTimes (double delta, int d)
 Sets equidistant observation times at \(t_j = j\delta\), for. More...
 
double [] getObservationTimes ()
 Returns a reference to the array that contains the observation times. More...
 
int getNumObservationTimes ()
 Returns the number \(d\) of observation times, excluding the time \(t_0\).
 
abstract double [] generatePath ()
 Generates, returns, and saves the sample path \(\{X(t_0), X(t_1), \dots, X(t_d)\}\). More...
 
double [] generatePath (RandomStream stream)
 Same as generatePath(), but first resets the stream to stream.
 
double [] getPath ()
 Returns a reference to the last generated sample path \(\{X(t_0), ... , X(t_d)\}\). More...
 
void getSubpath (double[] subpath, int[] pathIndices)
 Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
 
double getObservation (int j)
 Returns \(X(t_j)\) from the current sample path. More...
 
void resetStartProcess ()
 Resets the observation counter to its initial value \(j=0\), so that the current observation \(X(t_j)\) becomes \(X(t_0)\). More...
 
boolean hasNextObservation ()
 Returns true if \(j<d\), where \(j\) is the number of observations of the current sample path generated since the last call to resetStartProcess. More...
 
double nextObservation ()
 Generates and returns the next observation \(X(t_j)\) of the stochastic process. More...
 
int getCurrentObservationIndex ()
 Returns the value of the index \(j\) corresponding to the time. More...
 
double getCurrentObservation ()
 Returns the value of the last generated observation \(X(t_j)\).
 
double getX0 ()
 Returns the initial value \(X(t_0)\) for this process.
 
void setX0 (double s0)
 Sets the initial value \(X(t_0)\) for this process to s0, and reinitializes.
 
abstract void setStream (RandomStream stream)
 Resets the random stream of the underlying generator to stream.
 
abstract RandomStream getStream ()
 Returns the random stream of the underlying generator.
 
int [] getArrayMappingCounterToIndex ()
 Returns a reference to an array that maps an integer \(k\) to \(i_k\), the index of the observation \(S(t_{i_k})\) corresponding to the \(k\)-th observation to be generated for a sample path of this process. More...
 

Protected Attributes

BrownianMotionPCA bmPCA
 
- Protected Attributes inherited from InverseGaussianProcess
RandomStream stream
 
double delta
 
double gamma
 
double deltaOverGamma
 
double deltaSquare
 
double [] imu
 
double [] ilam
 
- Protected Attributes inherited from StochasticProcess
boolean observationTimesSet = false
 
double x0 = 0.0
 
int d = -1
 
int observationIndex = 0
 
int observationCounter = 0
 
double [] t
 
double [] path
 
int [] observationIndexFromCounter
 

Additional Inherited Members

- Protected Member Functions inherited from InverseGaussianProcess
void init ()
 
- Protected Member Functions inherited from StochasticProcess
void init ()
 
- Package Attributes inherited from InverseGaussianProcess
int numberOfRandomStreams
 

Detailed Description

Approximates a principal component analysis (PCA) decomposition of the InverseGaussianProcess.

The PCA decomposition of a BrownianMotionPCA with a covariance matrix identical to the one of our InverseGaussianProcess is used to generate the path of our InverseGaussianProcess [140] . Such a path is a perfectly random path and it is hoped that it will provide reduction in the simulation variance when using quasi-Monte Carlo.

The method nextObservation() cannot be used with PCA decompositions since the whole path must be generated at once.

Constructor & Destructor Documentation

◆ InverseGaussianProcessPCA()

InverseGaussianProcessPCA ( double  s0,
double  delta,
double  gamma,
RandomStream  stream 
)

Constructs a new InverseGaussianProcessPCA.

The initial value s0 will be overridden by \(t[0]\) when the observation times are set.

Member Function Documentation

◆ generatePath()

double [] generatePath ( double []  uniforms01)

Instead of using the internal stream to generate the path, uses an array of uniforms \(U[0,1)\).

The length of the array should be equal to the length of the number of periods in the observation times. This method is useful for NormalInverseGaussianProcess.

◆ setBrownianMotionPCA()

void setBrownianMotionPCA ( BrownianMotionPCA  bmPCA)

Sets the brownian motion PCA.

The observation times will be overriden when the method observationTimes() is called on the InverseGaussianProcessPCA.


The documentation for this class was generated from the following file: