SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
InverseGaussianProcessBridge Class Reference

Samples the path by bridge sampling: first finding the process value at the final time and then the middle time, etc. More...

Inheritance diagram for InverseGaussianProcessBridge:
[legend]
Collaboration diagram for InverseGaussianProcessBridge:
[legend]

Public Member Functions

 InverseGaussianProcessBridge (double s0, double delta, double gamma, RandomStream stream, RandomStream otherStream)
 Constructs a new InverseGaussianProcessBridge. More...
 
double [] generatePath ()
 Generates the path. More...
 
double [] generatePath (double[] unifNorm, double[] unifOther)
 Instead of using the internal streams to generate the path, it uses two arrays of uniforms \(U[0,1)\). More...
 
double nextObservation ()
 Returns the next observation in the bridge order, not the sequential order.
 
void resetStartProcess ()
 
RandomStream getStream ()
 Only returns a stream if both inner streams are the same.
 
void setStream (RandomStream stream, RandomStream otherStream)
 Sets the streams.
 
void setStream (RandomStream stream)
 Sets both inner streams to the same stream.
 
- Public Member Functions inherited from InverseGaussianProcessMSH
 InverseGaussianProcessMSH (double s0, double delta, double gamma, RandomStream stream, RandomStream otherStream)
 Constructs a new InverseGaussianProcessMSH. More...
 
double [] generatePath ()
 Generates the path. More...
 
double [] generatePath (double[] unifNorm, double[] unifOther)
 Instead of using the internal streams to generate the path, uses two arrays of uniforms \(U[0,1)\). More...
 
double [] generatePath (double[] uniforms01)
 Not implemented, requires two umontreal.ssj.rng.RandomStream ’s.
 
double nextObservation ()
 
RandomStream getStream ()
 Only returns a stream if both inner umontreal.ssj.rng.RandomStream ’s are the same.
 
void setStream (RandomStream stream, RandomStream otherStream)
 Sets the streams.
 
void setStream (RandomStream stream)
 Sets both inner streams to stream.
 
void setOtherStream (RandomStream otherStream)
 Sets the otherStream, which is the stream used to choose between the two roots in the MSH method.
 
RandomStream getOtherStream ()
 Returns the otherStream, which is the stream used to choose between the two quadratic roots from the MSH method.
 
void setNormalGen (NormalGen normalGen)
 Sets the normal generator. More...
 
NormalGen getNormalGen ()
 Returns the normal generator.
 
- Public Member Functions inherited from InverseGaussianProcess
 InverseGaussianProcess (double s0, double delta, double gamma, RandomStream stream)
 Constructs a new InverseGaussianProcess. More...
 
double [] generatePath ()
 
double [] generatePath (double[] uniforms01)
 Instead of using the internal stream to generate the path, uses an array of uniforms \(U[0,1)\). More...
 
double [] generatePath (double[] uniforms01, double[] uniforms01b)
 This method does not work for this class, but will be useful for the subclasses that require two streams.
 
double nextObservation ()
 
void setParams (double delta, double gamma)
 Sets the parameters.
 
double getDelta ()
 Returns \(\delta\).
 
double getGamma ()
 Returns \(\gamma\).
 
double getAnalyticAverage (double time)
 Returns the analytic average which is \(\delta t/ \gamma\), with \(t=\) time.
 
double getAnalyticVariance (double time)
 Returns the analytic variance which is \((\delta t)^2\), with \(t=\) time.
 
RandomStream getStream ()
 
void setStream (RandomStream stream)
 
int getNumberOfRandomStreams ()
 Returns the number of random streams of this process. More...
 
- Public Member Functions inherited from StochasticProcess
void setObservationTimes (double[] T, int d)
 Sets the observation times of the process to a copy of T, with. More...
 
void setObservationTimes (double delta, int d)
 Sets equidistant observation times at \(t_j = j\delta\), for. More...
 
double [] getObservationTimes ()
 Returns a reference to the array that contains the observation times. More...
 
int getNumObservationTimes ()
 Returns the number \(d\) of observation times, excluding the time \(t_0\).
 
abstract double [] generatePath ()
 Generates, returns, and saves the sample path \(\{X(t_0), X(t_1), \dots, X(t_d)\}\). More...
 
double [] generatePath (RandomStream stream)
 Same as generatePath(), but first resets the stream to stream.
 
double [] getPath ()
 Returns a reference to the last generated sample path \(\{X(t_0), ... , X(t_d)\}\). More...
 
void getSubpath (double[] subpath, int[] pathIndices)
 Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
 
double getObservation (int j)
 Returns \(X(t_j)\) from the current sample path. More...
 
void resetStartProcess ()
 Resets the observation counter to its initial value \(j=0\), so that the current observation \(X(t_j)\) becomes \(X(t_0)\). More...
 
boolean hasNextObservation ()
 Returns true if \(j<d\), where \(j\) is the number of observations of the current sample path generated since the last call to resetStartProcess. More...
 
double nextObservation ()
 Generates and returns the next observation \(X(t_j)\) of the stochastic process. More...
 
int getCurrentObservationIndex ()
 Returns the value of the index \(j\) corresponding to the time. More...
 
double getCurrentObservation ()
 Returns the value of the last generated observation \(X(t_j)\).
 
double getX0 ()
 Returns the initial value \(X(t_0)\) for this process.
 
void setX0 (double s0)
 Sets the initial value \(X(t_0)\) for this process to s0, and reinitializes.
 
abstract void setStream (RandomStream stream)
 Resets the random stream of the underlying generator to stream.
 
abstract RandomStream getStream ()
 Returns the random stream of the underlying generator.
 
int [] getArrayMappingCounterToIndex ()
 Returns a reference to an array that maps an integer \(k\) to \(i_k\), the index of the observation \(S(t_{i_k})\) corresponding to the \(k\)-th observation to be generated for a sample path of this process. More...
 

Protected Member Functions

void init ()
 
- Protected Member Functions inherited from InverseGaussianProcess
void init ()
 
- Protected Member Functions inherited from StochasticProcess
void init ()
 

Protected Attributes

double [] imu2
 
double [] imuLambdaZ
 
double [] imuOver2LambdaZ
 
int [] wIndexList
 
int bridgeCounter = -1
 
- Protected Attributes inherited from InverseGaussianProcessMSH
RandomStream otherStream
 
NormalGen normalGen
 
- Protected Attributes inherited from InverseGaussianProcess
RandomStream stream
 
double delta
 
double gamma
 
double deltaOverGamma
 
double deltaSquare
 
double [] imu
 
double [] ilam
 
- Protected Attributes inherited from StochasticProcess
boolean observationTimesSet = false
 
double x0 = 0.0
 
int d = -1
 
int observationIndex = 0
 
int observationCounter = 0
 
double [] t
 
double [] path
 
int [] observationIndexFromCounter
 

Additional Inherited Members

- Package Attributes inherited from InverseGaussianProcess
int numberOfRandomStreams
 

Detailed Description

Samples the path by bridge sampling: first finding the process value at the final time and then the middle time, etc.

The method nextObservation() returns the path value in that non-sequential order. This class uses two umontreal.ssj.rng.RandomStream ’s to generate a path [239] .

Constructor & Destructor Documentation

◆ InverseGaussianProcessBridge()

InverseGaussianProcessBridge ( double  s0,
double  delta,
double  gamma,
RandomStream  stream,
RandomStream  otherStream 
)

Constructs a new InverseGaussianProcessBridge.

The initial value s0 will be overridden by \(t[0]\) when the observation times are set.

Member Function Documentation

◆ generatePath() [1/2]

double [] generatePath ( )

Generates the path.

The two inner umontreal.ssj.rng.RandomStream ’s are sampled alternatively.

◆ generatePath() [2/2]

double [] generatePath ( double []  unifNorm,
double []  unifOther 
)

Instead of using the internal streams to generate the path, it uses two arrays of uniforms \(U[0,1)\).

The length of the arrays unifNorm and unifOther should be equal to the number of time steps, excluding \(t_0\).


The documentation for this class was generated from the following file: