SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | List of all members
GeometricNormalInverseGaussianProcess Class Reference

The geometric normal inverse gaussian (GNIG) process is the exponentiation of a NormalInverseGaussianProcess :

\[ S(t) = S_0 \exp\left[ (r-\omega_{RN})t + \mbox{NIG}(t;\alpha,\beta,\mu,\delta) \right], \]

where \(r\) is the interest rate. More...

Inheritance diagram for GeometricNormalInverseGaussianProcess:
[legend]
Collaboration diagram for GeometricNormalInverseGaussianProcess:
[legend]

Public Member Functions

 GeometricNormalInverseGaussianProcess (double s0, double muGeom, double alpha, double beta, double mu, double delta, RandomStream streamBrownian, NormalInverseGaussianProcess nigP)
 Constructs a new GeometricNormalInverseGaussianProcess. More...
 
 GeometricNormalInverseGaussianProcess (double s0, double muGeom, double alpha, double beta, double mu, double delta, RandomStream streamBrownian, InverseGaussianProcess igP)
 Constructs a new GeometricNormalInverseGaussianProcess. More...
 
 GeometricNormalInverseGaussianProcess (double s0, double muGeom, double alpha, double beta, double mu, double delta, RandomStream streamBrownian, RandomStream streamNIG1, RandomStream streamNIG2, String igType)
 Constructs a new GeometricNormalInverseGaussianProcess. More...
 
 GeometricNormalInverseGaussianProcess (double s0, double muGeom, double alpha, double beta, double mu, double delta, RandomStream streamAll, String igType)
 Constructs a new GeometricNormalInverseGaussianProcess. More...
 
- Public Member Functions inherited from GeometricLevyProcess
double [] generatePath ()
 Generates a path.
 
double nextObservation ()
 Returns the next observation. More...
 
void resetStartProcess ()
 Resets the step counter of the geometric process and the underlying Lévy process to the start value.
 
void setObservationTimes (double[] time, int d)
 Sets the observation times on the geometric process and the underlying Lévy process.
 
double getOmega ()
 Returns the risk neutral correction.
 
double getMuGeom ()
 Returns the geometric drift parameter, which is usually the interest rate, \(r\).
 
void setMuGeom (double muGeom)
 Sets the drift parameter (interest rate) of the geometric term.
 
StochasticProcess getLevyProcess ()
 Returns the Lévy process.
 
void resetRiskNeutralCorrection (double omegaRN)
 Changes the value of \(\omega_{RN}\). More...
 
RandomStream getStream ()
 Returns the stream from the underlying Lévy process. More...
 
void setStream (RandomStream stream)
 Resets the stream in the underlying Lévy process. More...
 
- Public Member Functions inherited from StochasticProcess
void setObservationTimes (double[] T, int d)
 Sets the observation times of the process to a copy of T, with. More...
 
void setObservationTimes (double delta, int d)
 Sets equidistant observation times at \(t_j = j\delta\), for. More...
 
double [] getObservationTimes ()
 Returns a reference to the array that contains the observation times. More...
 
int getNumObservationTimes ()
 Returns the number \(d\) of observation times, excluding the time \(t_0\).
 
abstract double [] generatePath ()
 Generates, returns, and saves the sample path \(\{X(t_0), X(t_1), \dots, X(t_d)\}\). More...
 
double [] generatePath (RandomStream stream)
 Same as generatePath(), but first resets the stream to stream.
 
double [] getPath ()
 Returns a reference to the last generated sample path \(\{X(t_0), ... , X(t_d)\}\). More...
 
void getSubpath (double[] subpath, int[] pathIndices)
 Returns in subpath the values of the process at a subset of the observation times, specified as the times \(t_j\) whose indices. More...
 
double getObservation (int j)
 Returns \(X(t_j)\) from the current sample path. More...
 
void resetStartProcess ()
 Resets the observation counter to its initial value \(j=0\), so that the current observation \(X(t_j)\) becomes \(X(t_0)\). More...
 
boolean hasNextObservation ()
 Returns true if \(j<d\), where \(j\) is the number of observations of the current sample path generated since the last call to resetStartProcess. More...
 
double nextObservation ()
 Generates and returns the next observation \(X(t_j)\) of the stochastic process. More...
 
int getCurrentObservationIndex ()
 Returns the value of the index \(j\) corresponding to the time. More...
 
double getCurrentObservation ()
 Returns the value of the last generated observation \(X(t_j)\).
 
double getX0 ()
 Returns the initial value \(X(t_0)\) for this process.
 
void setX0 (double s0)
 Sets the initial value \(X(t_0)\) for this process to s0, and reinitializes.
 
abstract void setStream (RandomStream stream)
 Resets the random stream of the underlying generator to stream.
 
abstract RandomStream getStream ()
 Returns the random stream of the underlying generator.
 
int [] getArrayMappingCounterToIndex ()
 Returns a reference to an array that maps an integer \(k\) to \(i_k\), the index of the observation \(S(t_{i_k})\) corresponding to the \(k\)-th observation to be generated for a sample path of this process. More...
 

Additional Inherited Members

- Protected Member Functions inherited from GeometricLevyProcess
void init ()
 
- Protected Member Functions inherited from StochasticProcess
void init ()
 
- Protected Attributes inherited from GeometricLevyProcess
StochasticProcess levyProcess
 
double omegaRiskNeutralCorrection
 
double muGeom
 
double [] muGeomRNdt
 
double [] muGeomRNdT
 
- Protected Attributes inherited from StochasticProcess
boolean observationTimesSet = false
 
double x0 = 0.0
 
int d = -1
 
int observationIndex = 0
 
int observationCounter = 0
 
double [] t
 
double [] path
 
int [] observationIndexFromCounter
 

Detailed Description

The geometric normal inverse gaussian (GNIG) process is the exponentiation of a NormalInverseGaussianProcess :

\[ S(t) = S_0 \exp\left[ (r-\omega_{RN})t + \mbox{NIG}(t;\alpha,\beta,\mu,\delta) \right], \]

where \(r\) is the interest rate.

It is a strictly positive process, which is useful in finance. There is also a neutral correction in the exponential, \(\omega_{RN}= \mu+ \delta\gamma-\delta\sqrt{\alpha^2-(1+\beta)^2}\), which takes into account the market price of risk. The underlying NIG process must start at zero, NIG \((t_0) = 0 \) and the initial time should also be set to zero, \(t_0 = 0\), both for the NIG and GNIG.

Constructor & Destructor Documentation

◆ GeometricNormalInverseGaussianProcess() [1/4]

GeometricNormalInverseGaussianProcess ( double  s0,
double  muGeom,
double  alpha,
double  beta,
double  mu,
double  delta,
RandomStream  streamBrownian,
NormalInverseGaussianProcess  nigP 
)

Constructs a new GeometricNormalInverseGaussianProcess.

The parameters of the NIG process will be overwritten by the parameters given to the GNIG, with the initial value of the NIG set to 0. The observation times of the NIG will also be changed to those of the GNIG.

◆ GeometricNormalInverseGaussianProcess() [2/4]

GeometricNormalInverseGaussianProcess ( double  s0,
double  muGeom,
double  alpha,
double  beta,
double  mu,
double  delta,
RandomStream  streamBrownian,
InverseGaussianProcess  igP 
)

Constructs a new GeometricNormalInverseGaussianProcess.

The process igP will be used internally by the underlying NormalInverseGaussianProcess.

◆ GeometricNormalInverseGaussianProcess() [3/4]

GeometricNormalInverseGaussianProcess ( double  s0,
double  muGeom,
double  alpha,
double  beta,
double  mu,
double  delta,
RandomStream  streamBrownian,
RandomStream  streamNIG1,
RandomStream  streamNIG2,
String  igType 
)

Constructs a new GeometricNormalInverseGaussianProcess.

The drift of the geometric term, muGeom, is usually the interest rate \(r\). s0 is the initial value of the process and the other four parameters are the parameters of the underlying NormalInverseGaussianProcess process.

◆ GeometricNormalInverseGaussianProcess() [4/4]

GeometricNormalInverseGaussianProcess ( double  s0,
double  muGeom,
double  alpha,
double  beta,
double  mu,
double  delta,
RandomStream  streamAll,
String  igType 
)

Constructs a new GeometricNormalInverseGaussianProcess.

The String igType corresponds to the type of InverseGaussianProcess that will be used by the underlying NormalInverseGaussianProcess. All umontreal.ssj.rng.RandomStream ’s used to generate the underlying NormalInverseGaussianProcess and its underlying InverseGaussianProcess are set to the same given streamAll.


The documentation for this class was generated from the following file: