SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | List of all members
StudentNoncentralGen Class Reference

This class implements random variate generators for the noncentral Student-t distribution with \(n>0\) degrees of freedom and noncentrality parameter \(\delta\). More...

Inheritance diagram for StudentNoncentralGen:
[legend]
Collaboration diagram for StudentNoncentralGen:
[legend]

Public Member Functions

double nextDouble ()
 
 StudentNoncentralGen (NormalGen ngen, ChiSquareGen cgen)
 Creates a noncentral-t random variate generator using normal generator ngen and chi-square generator cgen.
 
void setNormalGen (NormalGen ngen)
 Sets the normal generator to ngen.
 
void setChiSquareGen (ChiSquareGen cgen)
 Sets the chi-square generator to cgen.
 
- Public Member Functions inherited from RandomVariateGen
 RandomVariateGen (RandomStream s, Distribution dist)
 Creates a new random variate generator from the distribution dist, using stream s. More...
 
double nextDouble ()
 Generates a random number from the continuous distribution contained in this object. More...
 
void nextArrayOfDouble (double[] v, int start, int n)
 Generates n random numbers from the continuous distribution contained in this object. More...
 
double [] nextArrayOfDouble (int n)
 Generates n random numbers from the continuous distribution contained in this object, and returns them in a new array of size n. More...
 
RandomStream getStream ()
 Returns the umontreal.ssj.rng.RandomStream used by this generator. More...
 
void setStream (RandomStream stream)
 Sets the umontreal.ssj.rng.RandomStream used by this generator to stream.
 
Distribution getDistribution ()
 Returns the umontreal.ssj.probdist.Distribution used by this generator. More...
 
String toString ()
 Returns a String containing information about the current generator.
 

Additional Inherited Members

- Protected Attributes inherited from RandomVariateGen
RandomStream stream
 
Distribution dist
 

Detailed Description

This class implements random variate generators for the noncentral Student-t distribution with \(n>0\) degrees of freedom and noncentrality parameter \(\delta\).

If \(X\) is distributed according to a normal distribution with mean \(\delta\) and variance 1, and \(Y\) (statistically independent of \(X\)) is distributed according to a chi-square distribution with \(n\) degrees of freedom, then

\[ T’ = \frac{X}{\sqrt{Y/n}} \]

has a noncentral \(t\)-distribution with \(n\) degrees of freedom and noncentrality parameter \(\delta\).


The documentation for this class was generated from the following file: