SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Static Public Member Functions | List of all members

Implements binomial random variate generators using the convolution method. More...

Inheritance diagram for BinomialConvolutionGen:
[legend]
Collaboration diagram for BinomialConvolutionGen:
[legend]

Public Member Functions

 BinomialConvolutionGen (RandomStream s, int n, double p)
 Creates a binomial random variate generator with parameters \(n\) and \(p\), using stream s.
 
 BinomialConvolutionGen (RandomStream s, BinomialDist dist)
 Creates a random variate generator for the binomial distribution dist and stream s.
 
int nextInt ()
 
- Public Member Functions inherited from BinomialGen
 BinomialGen (RandomStream s, int n, double p)
 Creates a binomial random variate generator with parameters \(n\) and \(p\), using stream s.
 
 BinomialGen (RandomStream s, BinomialDist dist)
 Creates a random variate generator for the binomial distribution dist and the random stream s.
 
int getN ()
 Returns the parameter \(n\) of this object.
 
double getP ()
 Returns the parameter \(p\) of this object.
 
- Public Member Functions inherited from RandomVariateGenInt
 RandomVariateGenInt (RandomStream s, DiscreteDistributionInt dist)
 Creates a new random variate generator for the discrete distribution dist, using stream s. More...
 
int nextInt ()
 Generates a random number (an integer) from the discrete distribution contained in this object. More...
 
void nextArrayOfInt (int[] v, int start, int n)
 Generates n random numbers from the discrete distribution contained in this object. More...
 
int [] nextArrayOfInt (int n)
 Generates n random numbers from the discrete distribution contained in this object, and returns them in a new array of size n. More...
 
DiscreteDistributionInt getDistribution ()
 Returns the umontreal.ssj.probdist.DiscreteDistributionInt used by this generator. More...
 
- Public Member Functions inherited from RandomVariateGen
 RandomVariateGen (RandomStream s, Distribution dist)
 Creates a new random variate generator from the distribution dist, using stream s. More...
 
double nextDouble ()
 Generates a random number from the continuous distribution contained in this object. More...
 
void nextArrayOfDouble (double[] v, int start, int n)
 Generates n random numbers from the continuous distribution contained in this object. More...
 
double [] nextArrayOfDouble (int n)
 Generates n random numbers from the continuous distribution contained in this object, and returns them in a new array of size n. More...
 
RandomStream getStream ()
 Returns the umontreal.ssj.rng.RandomStream used by this generator. More...
 
void setStream (RandomStream stream)
 Sets the umontreal.ssj.rng.RandomStream used by this generator to stream.
 
Distribution getDistribution ()
 Returns the umontreal.ssj.probdist.Distribution used by this generator. More...
 
String toString ()
 Returns a String containing information about the current generator.
 

Static Public Member Functions

static int nextInt (RandomStream s, int n, double p)
 Generates a new integer from the binomial distribution with parameters \(n = \) n and \(p = \) p, using the given stream s.
 
- Static Public Member Functions inherited from BinomialGen
static int nextInt (RandomStream s, int n, double p)
 Generates a new integer from the binomial distribution with parameters \(n = \) n and \(p = \) p, using the given stream s.
 

Additional Inherited Members

- Protected Member Functions inherited from BinomialGen
void setParams (int n, double p)
 Sets the parameter \(n\) and \(p\) of this object.
 
- Protected Attributes inherited from BinomialGen
int n = -1
 
double p = -1.0
 
- Protected Attributes inherited from RandomVariateGen
RandomStream stream
 
Distribution dist
 

Detailed Description

Implements binomial random variate generators using the convolution method.

This method generates \(n\) Bernouilli random variates with parameter \(p\) and adds them up. Its advantages are that it requires little computer memory and no setup time. Its disadvantage is that it is very slow for large \(n\). It makes sense only when \(n\) is small.


The documentation for this class was generated from the following file: