SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Static Public Member Functions | Protected Attributes | List of all members

Implements the abstract class DiscreteDistributionIntMulti for the multinomial distribution with parameters \(n\) and ( \(p_1\), …, \(p_d\)). More...

Inheritance diagram for MultinomialDist:
[legend]
Collaboration diagram for MultinomialDist:
[legend]

Public Member Functions

 MultinomialDist (int n, double p[])
 Creates a MultinomialDist object with parameters \(n\) and ( \(p_1\),…, \(p_d\)) such that \(\sum_{i=1}^d p_i = 1\). More...
 
double prob (int x[])
 
double cdf (int x[])
 
double [] getMean ()
 
double [][] getCovariance ()
 
double [][] getCorrelation ()
 
int getN ()
 Returns the parameter \(n\) of this object.
 
double [] getP ()
 Returns the parameters ( \(p_1\),…, \(p_d\)) of this object.
 
void setParams (int n, double p[])
 Sets the parameters \(n\) and ( \(p_1\),…, \(p_d\)) of this object.
 
- Public Member Functions inherited from DiscreteDistributionIntMulti
abstract double prob (int[] x)
 Returns the probability mass function \(p(x_1, x_2, …, x_d)\), which should be a real number in \([0,1]\). More...
 
double cdf (int x[])
 Computes the cumulative probability function \(F\) of the distribution evaluated at x, assuming the lowest values start at 0, i.e. More...
 
int getDimension ()
 Returns the dimension \(d\) of the distribution.
 
abstract double [] getMean ()
 Returns the mean vector of the distribution, defined as \(\mu_i = E[X_i]\).
 
abstract double [][] getCovariance ()
 Returns the variance-covariance matrix of the distribution, defined as
\(\sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)]\).
 
abstract double [][] getCorrelation ()
 Returns the correlation matrix of the distribution, defined as \(\rho_{ij} = \sigma_{ij}/\sqrt{\sigma_{ii}\sigma_{jj}}\).
 

Static Public Member Functions

static double prob (int n, double p[], int x[])
 Computes the probability mass function ( fMultinomial ) of the multinomial distribution with parameters \(n\) and ( \(p_1\),…, \(p_d\)) evaluated at \(x\).
 
static double cdf (int n, double p[], int x[])
 Computes the function \(F\) of the multinomial distribution with parameters \(n\) and ( \(p_1\),…, \(p_d\)) evaluated at \(x\).
 
static double [] getMean (int n, double[] p)
 Computes the mean \(E[X_i] = np_i\) of the multinomial distribution with parameters \(n\) and ( \(p_1\),…, \(p_d\)).
 
static double [][] getCovariance (int n, double[] p)
 Computes the covariance matrix of the multinomial distribution with parameters \(n\) and ( \(p_1\),…, \(p_d\)).
 
static double [][] getCorrelation (int n, double[] p)
 Computes the correlation matrix of the multinomial distribution with parameters \(n\) and ( \(p_1\),…, \(p_d\)).
 
static double [] getMLE (int x[][], int m, int d, int n)
 Estimates and returns the parameters [ \(\hat{p_i}\),…, \(\hat{p_d}\)] of the multinomial distribution using the maximum likelihood method. More...
 

Protected Attributes

int n
 
double p []
 
- Protected Attributes inherited from DiscreteDistributionIntMulti
int dimension
 

Detailed Description

Implements the abstract class DiscreteDistributionIntMulti for the multinomial distribution with parameters \(n\) and ( \(p_1\), …, \(p_d\)).

The probability mass function is [97]

\[ P[X = (x_1,…,x_d)] = {n!} \prod_{i=1}^d\frac{p_i^{x_i}}{x_i!}, \tag{fMultinomial} \]

where \(\sum_{i=1}^d x_i = n\) and \(\sum_{i=1}^d p_i = 1\).

Constructor & Destructor Documentation

◆ MultinomialDist()

MultinomialDist ( int  n,
double  p[] 
)

Creates a MultinomialDist object with parameters \(n\) and ( \(p_1\),…, \(p_d\)) such that \(\sum_{i=1}^d p_i = 1\).

We have \(p_i = \) p[i-1].

Member Function Documentation

◆ getMLE()

static double [] getMLE ( int  x[][],
int  m,
int  d,
int  n 
)
static

Estimates and returns the parameters [ \(\hat{p_i}\),…, \(\hat{p_d}\)] of the multinomial distribution using the maximum likelihood method.

It uses the \(m\) observations of \(d\) components in table \(x[i][j]\), \(i = 0, 1, …, m-1\) and \(j = 0, 1, …, d-1\). The equations of the maximum likelihood are defined as

\begin{align*} \hat{p}_i = \frac{\bar{X_i}}{N}. \end{align*}

Parameters
xthe list of observations used to evaluate parameters
mthe number of observations used to evaluate parameters
dthe dimension of each observation
nthe number of independant trials for each series
Returns
returns the parameters [ \(\hat{p_i}\),…, \(\hat{p_d}\)]

The documentation for this class was generated from the following file: