SSJ  3.3.1
Stochastic Simulation in Java
Public Member Functions | Public Attributes | Static Protected Attributes | List of all members
ContinuousDistribution2Dim Class Referenceabstract

Classes implementing 2-dimensional continuous distributions should inherit from this class. More...

Inheritance diagram for ContinuousDistribution2Dim:
[legend]
Collaboration diagram for ContinuousDistribution2Dim:
[legend]

Public Member Functions

abstract double density (double x, double y)
 Returns \(f(x, y)\), the density of \((X, Y)\) evaluated at \((x, y)\). More...
 
double density (double[] x)
 Simply calls density (x[0], x[1]). More...
 
abstract double cdf (double x, double y)
 Computes the distribution function \(F(x, y)\):

\[ F(x, y) = P[X\le x, Y \le y] = \int_{-\infty}^x ds \int_{-\infty}^y dt  f(s, t). \]

. More...

 
double barF (double x, double y)
 Computes the upper cumulative distribution function \(\overline{F}(x, y)\):

\[ \overline{F}(x, y) = P[X\ge x, Y \ge y] = \int^{\infty}_x ds \int^{\infty}_y dt  f(s, t). \]

. More...

 
double cdf (double a1, double a2, double b1, double b2)
 Computes the cumulative probability in the square region

\[ P[a_1 \le X \le b_1,\: a_2 \le Y \le b_2] = \int_{a_1}^{b_1} dx \int_{a_2}^{b_2} dy  f(x, y). \]

. More...

 
- Public Member Functions inherited from ContinuousDistributionMulti
abstract double density (double[] x)
 Returns \(f(x_1, x_2, …, x_d)\), the probability density of \(X\) evaluated at the point \(x\), where \(x = \{x_1, x_2, …, x_d\}\). More...
 
int getDimension ()
 Returns the dimension \(d\) of the distribution.
 
abstract double [] getMean ()
 Returns the mean vector of the distribution, defined as \(\mu_i = E[X_i]\).
 
abstract double [][] getCovariance ()
 Returns the variance-covariance matrix of the distribution, defined as
\(\sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)]\).
 
abstract double [][] getCorrelation ()
 Returns the correlation matrix of the distribution, defined as \(\rho_{ij} = \sigma_{ij}/\sqrt{\sigma_{ii}\sigma_{jj}}\).
 

Public Attributes

int decPrec = 15
 Defines the target number of decimals of accuracy when approximating a distribution function, but there is no guarantee that this target is always attained.
 

Static Protected Attributes

static final double XINF = Double.MAX_VALUE
 
static final double XBIG = 1000.0
 
static final double [] EPSARRAY
 

Additional Inherited Members

- Protected Attributes inherited from ContinuousDistributionMulti
int dimension
 

Detailed Description

Classes implementing 2-dimensional continuous distributions should inherit from this class.

Such distributions are characterized by a density function \(f(x, y)\); thus the signature of a density method is supplied here. This class also provides a default implementation of \(\overline{F}(x, y)\), the upper CDF. The inverse function \(F^{-1}(u)\) represents a curve \(y = h(x)\) of constant \(u\) and it is not implemented.

Member Function Documentation

◆ barF()

double barF ( double  x,
double  y 
)

Computes the upper cumulative distribution function \(\overline{F}(x, y)\):

\[ \overline{F}(x, y) = P[X\ge x, Y \ge y] = \int^{\infty}_x ds \int^{\infty}_y dt  f(s, t). \]

.

Parameters
xvalue \(x\) at which the upper distribution is evaluated
yvalue \(y\) at which the upper distribution is evaluated
Returns
upper distribution function evaluated at \((x, y)\)

◆ cdf() [1/2]

abstract double cdf ( double  x,
double  y 
)
abstract

Computes the distribution function \(F(x, y)\):

\[ F(x, y) = P[X\le x, Y \le y] = \int_{-\infty}^x ds \int_{-\infty}^y dt  f(s, t). \]

.

Parameters
xvalue \(x\) at which the distribution function is evaluated
yvalue \(y\) at which the distribution function is evaluated
Returns
distribution function evaluated at \((x, y)\)

◆ cdf() [2/2]

double cdf ( double  a1,
double  a2,
double  b1,
double  b2 
)

Computes the cumulative probability in the square region

\[ P[a_1 \le X \le b_1,\: a_2 \le Y \le b_2] = \int_{a_1}^{b_1} dx \int_{a_2}^{b_2} dy  f(x, y). \]

.

Parameters
a1\(x\) lower limit of the square
a2\(y\) lower limit of the square
b1\(x\) upper limit of the square
b2\(y\) upper limit of the square
Returns
the cumulative probability in the square region

◆ density() [1/2]

abstract double density ( double  x,
double  y 
)
abstract

Returns \(f(x, y)\), the density of \((X, Y)\) evaluated at \((x, y)\).

Parameters
xvalue \(x\) at which the density is evaluated
yvalue \(y\) at which the density is evaluated
Returns
density function evaluated at \((x, y)\)

◆ density() [2/2]

double density ( double []  x)

Simply calls density (x[0], x[1]).

Parameters
xpoint \((x[0], x[1])\) at which the density is evaluated
Returns
density function evaluated at \((x[0], x[1])\)

Member Data Documentation

◆ EPSARRAY

final double [] EPSARRAY
staticprotected
Initial value:
= {
0.5, 0.5E-1, 0.5E-2, 0.5E-3, 0.5E-4, 0.5E-5, 0.5E-6, 0.5E-7, 0.5E-8,
0.5E-9, 0.5E-10, 0.5E-11, 0.5E-12, 0.5E-13, 0.5E-14, 0.5E-15, 0.5E-16,
0.5E-17, 0.5E-18, 0.5E-19, 0.5E-20, 0.5E-21, 0.5E-22, 0.5E-23, 0.5E-24,
0.5E-25, 0.5E-26, 0.5E-27, 0.5E-28, 0.5E-29, 0.5E-30, 0.5E-31, 0.5E-32,
0.5E-33, 0.5E-34, 0.5E-35
}

The documentation for this class was generated from the following file: