|
| WatsonUDist (int n) |
| Constructs a Watson U distribution for a sample of size \(n\).
|
|
double | density (double x) |
|
double | cdf (double x) |
| Returns the distribution function \(F(x)\). More...
|
|
double | barF (double x) |
| Returns \(\bar{F}(x) = 1 - F(x)\). More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
|
|
double | getMean () |
| Returns the mean of the distribution function.
|
|
double | getVariance () |
| Returns the variance of the distribution function.
|
|
double | getStandardDeviation () |
| Returns the standard deviation of the distribution function.
|
|
int | getN () |
| Returns the parameter \(n\) of this object.
|
|
void | setN (int n) |
| Sets the parameter \(n\) of this object.
|
|
double [] | getParams () |
| Return an array containing the parameter \(n\) of this object.
|
|
String | toString () |
| Returns a String containing information about the current distribution.
|
|
abstract double | density (double x) |
| Returns \(f(x)\), the density evaluated at \(x\). More...
|
|
double | barF (double x) |
| Returns the complementary distribution function. More...
|
|
double | inverseBrent (double a, double b, double u, double tol) |
| Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
|
|
double | inverseBisection (double u) |
| Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
|
|
double | inverseF (double u) |
| Returns the inverse distribution function \(x = F^{-1}(u)\). More...
|
|
double | getMean () |
| Returns the mean. More...
|
|
double | getVariance () |
| Returns the variance. More...
|
|
double | getStandardDeviation () |
| Returns the standard deviation. More...
|
|
double | getXinf () |
| Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
double | getXsup () |
| Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXinf (double xa) |
| Sets the value \(x_a=\) xa , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
void | setXsup (double xb) |
| Sets the value \(x_b=\) xb , such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
|
|
|
static double | density (int n, double x) |
| Computes the density of the Watson U distribution with parameter \(n\).
|
|
static double | cdf (int n, double x) |
| Computes the Watson \(U\) distribution function, i.e. More...
|
|
static double | barF (int n, double x) |
| Computes the complementary distribution function \(\bar{F}_n(x)\), where \(F_n\) is the Watson \(U\) distribution with parameter \(n\).
|
|
static double | inverseF (int n, double u) |
| Computes \(x = F_n^{-1}(u)\), where \(F_n\) is the Watson \(U\) distribution with parameter \(n\).
|
|
static double | getMean (int n) |
| Returns the mean of the Watson \(U\) distribution with parameter \(n\). More...
|
|
static double | getVariance (int n) |
| Returns the variance of the Watson \(U\) distribution with parameter \(n\). More...
|
|
static double | getStandardDeviation (int n) |
| Returns the standard deviation of the Watson \(U\) distribution with parameter \(n\). More...
|
|
Extends the class ContinuousDistribution for the Watson U distribution (see [55], [224], [225] ).
Given a sample of \(n\) independent uniforms \(u_i\) over \([0,1]\), the Watson statistic \(U_n^2\) is defined by
\begin{align*} W_n^2 & = \frac{1}{12n} + \sum_{j=1}^n \left\{u_{(j)} - \frac{(j- 1/2)}{n}\right\}^2, \\ U_n^2 & = W_n^2 - n\left(\bar{u}_n - 1/2\right)^2. \tag{WatsonU} \end{align*}
where the \(u_{(j)}\) are the \(u_i\) sorted in increasing order, and \(\bar{u}_n\) is the average of the observations \(u_i\). The distribution function (the cumulative probabilities) is defined as \(F_n(x) = P[U_n^2 \le x]\).