SSJ  3.3.1
Stochastic Simulation in Java
Classes | Public Member Functions | Static Public Member Functions | Protected Attributes | Static Package Functions | List of all members

Extends the class ContinuousDistribution for the Watson \(G\) distribution (see [41], [238] ). More...

Inheritance diagram for WatsonGDist:
[legend]
Collaboration diagram for WatsonGDist:
[legend]

Public Member Functions

 WatsonGDist (int n)
 Constructs a Watson distribution for a sample of size \(n\).
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
int getN ()
 Returns the parameter \(n\) of this object.
 
void setN (int n)
 Sets the parameter \(n\) of this object.
 
double [] getParams ()
 Return an array containing the parameter \(n\) of this object.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (int n, double x)
 Computes the density function for a Watson \(G\) distribution with parameter \(n\).
 
static double cdf (int n, double x)
 Computes the Watson \(G\) distribution function \(F_n(x)\), with parameter \(n\). More...
 
static double barF (int n, double x)
 Computes the complementary distribution function \(\bar{F}_n(x)\) with parameter \(n\).
 
static double inverseF (int n, double u)
 Computes \(x = F_n^{-1}(u)\), where \(F_n\) is the Watson \(G\) distribution with parameter \(n\).
 

Protected Attributes

int n
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 

Static Package Functions

 [static initializer]
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Extends the class ContinuousDistribution for the Watson \(G\) distribution (see [41], [238] ).

Given a sample of \(n\) independent uniforms \(U_i\) over \([0,1]\), the \(G\) statistic is defined by

\begin{align} G_n & = \sqrt{n} \max_{\Rule{0.0pt}{7.0pt}{0.0pt} 1\le j \le n} \left\{ j/n - U_{(j)} + \bar{U}_n - 1/2 \right\} \tag{WatsonG} \\ & = \sqrt{n}\left(D_n^+ + \bar{U}_n - 1/2\right), \nonumber \end{align}

where the \(U_{(j)}\) are the \(U_i\) sorted in increasing order, \(\bar{U}_n\) is the average of the observations \(U_i\), and \(D_n^+\) is the Kolmogorov-Smirnov+ statistic. The distribution function (the cumulative probabilities) is defined as \(F_n(x) = P[G_n \le x]\).

Member Function Documentation

◆ barF()

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ cdf() [1/2]

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ cdf() [2/2]

static double cdf ( int  n,
double  x 
)
static

Computes the Watson \(G\) distribution function \(F_n(x)\), with parameter \(n\).

A cubic spline interpolation is used for the asymptotic distribution when \(n\to\infty\), and an empirical correction of order \(1/\sqrt{n}\), obtained empirically from \(10^7\) simulation runs with \(n = 256\) is then added. The absolute error is estimated to be less than 0.01, 0.005, 0.002, 0.0008, 0.0005, 0.0005, 0.0005 for \(n = 16\), 32, 64, 128, 256, 512, 1024, respectively.

◆ inverseF()

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.


The documentation for this class was generated from the following file: