SSJ
3.3.1
Stochastic Simulation in Java
|
Extends the class DiscreteDistributionInt for the geometric distribution [118] (page 322) with parameter \(p\), where \(0 < p < 1\). More...
Public Member Functions | |
GeometricDist (double p) | |
Constructs a geometric distribution with parameter \(p\). | |
double | prob (int x) |
double | cdf (int x) |
double | barF (int x) |
int | inverseFInt (double u) |
double | getMean () |
Returns the mean of the distribution function. | |
double | getVariance () |
Returns the variance of the distribution function. | |
double | getStandardDeviation () |
Returns the standard deviation of the distribution function. | |
double | getP () |
Returns the \(p\) associated with this object. | |
void | setP (double p) |
Resets the value of \(p\) associated with this object. | |
double [] | getParams () |
Return a table containing the parameters of the current distribution. | |
String | toString () |
Returns a String containing information about the current distribution. | |
Public Member Functions inherited from DiscreteDistributionInt | |
abstract double | prob (int x) |
Returns \(p(x)\), the probability of \(x\). More... | |
double | cdf (double x) |
Returns the distribution function \(F\) evaluated at \(x\) (see ( FDistDisc )). More... | |
abstract double | cdf (int x) |
Returns the distribution function \(F\) evaluated at \(x\) (see ( FDistDisc )). More... | |
double | barF (double x) |
Returns \(\bar{F}(x)\), the complementary distribution function. More... | |
double | barF (int x) |
Returns \(\bar{F}(x)\), the complementary distribution function. More... | |
int | getXinf () |
Returns the lower limit \(x_a\) of the support of the probability mass function. More... | |
int | getXsup () |
Returns the upper limit \(x_b\) of the support of the probability mass function. More... | |
double | inverseF (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), where. More... | |
int | inverseFInt (double u) |
Returns the inverse distribution function \(F^{-1}(u)\), where. More... | |
Static Public Member Functions | |
static double | prob (double p, int x) |
Computes the geometric probability \(p(x)\) given in ( fgeom ) . | |
static double | cdf (double p, int x) |
Computes the distribution function \(F(x)\). | |
static double | barF (double p, int x) |
Computes the complementary distribution function. More... | |
static int | inverseF (double p, double u) |
Computes the inverse of the geometric distribution, given by ( FInvgeom ). | |
static double [] | getMLE (int[] x, int n) |
Estimates the parameter \(p\) of the geometric distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static GeometricDist | getInstanceFromMLE (int[] x, int n) |
Creates a new instance of a geometric distribution with parameter \(p\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\). More... | |
static double | getMean (double p) |
Computes and returns the mean \(E[X] = (1 - p)/p\) of the geometric distribution with parameter \(p\). More... | |
static double | getVariance (double p) |
Computes and returns the variance \(\mbox{Var}[X] = (1 - p)/p^2\) of the geometric distribution with parameter \(p\). More... | |
static double | getStandardDeviation (double p) |
Computes and returns the standard deviation of the geometric distribution with parameter \(p\). More... | |
Additional Inherited Members | |
Static Public Attributes inherited from DiscreteDistributionInt | |
static double | EPSILON = 1.0e-16 |
Environment variable that determines what probability terms can be considered as negligible when building precomputed tables for distribution and mass functions. More... | |
Protected Attributes inherited from DiscreteDistributionInt | |
double | cdf [] = null |
double | pdf [] = null |
int | xmin = 0 |
int | xmax = 0 |
int | xmed = 0 |
int | supportA = Integer.MIN_VALUE |
int | supportB = Integer.MAX_VALUE |
Static Protected Attributes inherited from DiscreteDistributionInt | |
static final double | EPS_EXTRA = 1.0e-6 |
Extends the class DiscreteDistributionInt for the geometric distribution [118] (page 322) with parameter \(p\), where \(0 < p < 1\).
\[ p (x) = p (1-p)^x, \qquad\mbox{for } x = 0, 1, 2, …\tag{fgeom} \]
The distribution function is given by
\[ F (x) = 1 - (1-p)^{x+1}, \qquad\mbox{for } x = 0, 1, 2, …\tag{Fgeom} \]
\[ F^{-1}(u) = \left\lfloor\frac{\ln(1 - u)}{\ln(1 - p)} \right\rfloor, \qquad\mbox{for } 0 \le u < 1. \tag{FInvgeom} \]
|
static |
Computes the complementary distribution function.
WARNING: The complementary distribution function is defined as \(\bar{F}(x) = P[X \ge x]\).
|
static |
Creates a new instance of a geometric distribution with parameter \(p\) estimated using the maximum likelihood method based on the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
x | the list of observations to use to evaluate parameters |
n | the number of observations to use to evaluate parameters |
|
static |
Computes and returns the mean \(E[X] = (1 - p)/p\) of the geometric distribution with parameter \(p\).
|
static |
Estimates the parameter \(p\) of the geometric distribution using the maximum likelihood method, from the \(n\) observations \(x[i]\), \(i = 0, 1, …, n-1\).
The estimate is returned in element 0 of the returned array. The maximum likelihood estimator \(\hat{p}\) satisfies the equation (see [118] (page 323))
\begin{align*} \hat{p} = \frac{1}{\bar{x}_n + 1\Rule{0.0pt}{11.0pt}{0.0pt}} \end{align*}
where \(\bar{x}_n\) is the average of \(x[0], …, x[n-1]\).
x | the list of observations used to evaluate parameters |
n | the number of observations used to evaluate parameters |
|
static |
Computes and returns the standard deviation of the geometric distribution with parameter \(p\).
|
static |
Computes and returns the variance \(\mbox{Var}[X] = (1 - p)/p^2\) of the geometric distribution with parameter \(p\).