SSJ  3.3.1
Stochastic Simulation in Java
Classes | Public Member Functions | Static Public Member Functions | Protected Attributes | List of all members
CramerVonMisesDist Class Reference

Extends the class ContinuousDistribution for the Cramér-von Mises distribution (see [55], [224], [225] ). More...

Inheritance diagram for CramerVonMisesDist:
[legend]
Collaboration diagram for CramerVonMisesDist:
[legend]

Public Member Functions

 CramerVonMisesDist (int n)
 Constructs a Cramér-von Mises distribution for a sample of size \(n\).
 
double density (double x)
 
double cdf (double x)
 Returns the distribution function \(F(x)\). More...
 
double barF (double x)
 Returns \(\bar{F}(x) = 1 - F(x)\). More...
 
double inverseF (double u)
 Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ). More...
 
double getMean ()
 Returns the mean of the distribution function.
 
double getVariance ()
 Returns the variance of the distribution function.
 
double getStandardDeviation ()
 Returns the standard deviation of the distribution function.
 
int getN ()
 Returns the parameter \(n\) of this object.
 
void setN (int n)
 Sets the parameter \(n\) of this object.
 
double [] getParams ()
 Return an array containing the parameter \(n\) of this object.
 
String toString ()
 Returns a String containing information about the current distribution.
 
- Public Member Functions inherited from ContinuousDistribution
abstract double density (double x)
 Returns \(f(x)\), the density evaluated at \(x\). More...
 
double barF (double x)
 Returns the complementary distribution function. More...
 
double inverseBrent (double a, double b, double u, double tol)
 Computes the inverse distribution function \(x = F^{-1}(u)\), using the Brent-Dekker method. More...
 
double inverseBisection (double u)
 Computes and returns the inverse distribution function \(x = F^{-1}(u)\), using bisection. More...
 
double inverseF (double u)
 Returns the inverse distribution function \(x = F^{-1}(u)\). More...
 
double getMean ()
 Returns the mean. More...
 
double getVariance ()
 Returns the variance. More...
 
double getStandardDeviation ()
 Returns the standard deviation. More...
 
double getXinf ()
 Returns \(x_a\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
double getXsup ()
 Returns \(x_b\) such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXinf (double xa)
 Sets the value \(x_a=\) xa, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 
void setXsup (double xb)
 Sets the value \(x_b=\) xb, such that the probability density is 0 everywhere outside the interval \([x_a, x_b]\). More...
 

Static Public Member Functions

static double density (int n, double x)
 Computes the density function for a Cramér-von Mises distribution with parameter \(n\).
 
static double cdf (int n, double x)
 Computes the Cramér-von Mises distribution function with parameter \(n\). More...
 
static double barF (int n, double x)
 Computes the complementary distribution function \(\bar{F}_n(x)\) with parameter \(n\).
 
static double inverseF (int n, double u)
 Computes \(x = F_n^{-1}(u)\), where \(F_n\) is the Cramér-von Mises distribution with parameter \(n\).
 
static double getMean (int n)
 Returns the mean of the distribution with parameter \(n\). More...
 
static double getVariance (int n)
 Returns the variance of the distribution with parameter \(n\). More...
 
static double getStandardDeviation (int n)
 Returns the standard deviation of the distribution with parameter \(n\). More...
 

Protected Attributes

int n
 
- Protected Attributes inherited from ContinuousDistribution
double supportA = Double.NEGATIVE_INFINITY
 
double supportB = Double.POSITIVE_INFINITY
 

Additional Inherited Members

- Public Attributes inherited from ContinuousDistribution
int decPrec = 15
 
- Static Protected Attributes inherited from ContinuousDistribution
static final double XBIG = 100.0
 
static final double XBIGM = 1000.0
 
static final double [] EPSARRAY
 

Detailed Description

Extends the class ContinuousDistribution for the Cramér-von Mises distribution (see [55], [224], [225] ).

Given a sample of \(n\) independent uniforms \(U_i\) over \([0,1]\), the Cramér-von Mises statistic \(W_n^2\) is defined by

\[ W_n^2 = \frac{1}{12n} + \sum_{j=1}^n \left(U_{(j)} - \frac{(j-0.5)}{n}\right)^2, \tag{CraMis} \]

where the \(U_{(j)}\) are the \(U_i\) sorted in increasing order. The distribution function (the cumulative probabilities) is defined as \(F_n(x) = P[W_n^2 \le x]\).

Member Function Documentation

◆ barF()

double barF ( double  x)

Returns \(\bar{F}(x) = 1 - F(x)\).

Parameters
xvalue at which the complementary distribution function is evaluated
Returns
complementary distribution function evaluated at x

Implements Distribution.

◆ cdf() [1/2]

double cdf ( double  x)

Returns the distribution function \(F(x)\).

Parameters
xvalue at which the distribution function is evaluated
Returns
distribution function evaluated at x

Implements Distribution.

◆ cdf() [2/2]

static double cdf ( int  n,
double  x 
)
static

Computes the Cramér-von Mises distribution function with parameter \(n\).

Returns an approximation of \(P[W_n^2 \le x]\), where \(W_n^2\) is the Cramér von Mises statistic (see [224], [225], [6], [110] ). The approximation is based on the distribution function of \(W^2 = \lim_{n\to\infty} W_n^2\), which has the following series expansion derived by Anderson and Darling [6] :

\[ \qquad P(W^2 \le x) = \frac{1}{\pi\sqrt{x}} \sum_{j=0}^{\infty}(-1)^j \binom{-1/2}{j} \sqrt{4j+1}\;\; {exp}\left\{-\frac{(4j+1)^2}{16 x}\right\} K_{1/4}\left(\frac{(4j+1)^2}{16 x}\right), \]

where \(K_{\nu}\) is the modified Bessel function of the second kind. To correct for the deviation between \(P(W_n^2\le x)\) and \(P(W^2\le x)\), we add a correction in \(1/n\), obtained empirically by simulation. For \(n = 10\), 20, 40, the error is less than 0.002, 0.001, and 0.0005, respectively, while for \(n \ge100\) it is less than 0.0005. For \(n \to\infty\), we estimate that the method returns at least 6 decimal digits of precision. For \(n = 1\), the method uses the exact distribution: \(P(W_1^2 \le x) = 2 \sqrt{x - 1/12}\) for \(1/12 \le x \le1/3\).

◆ getMean()

static double getMean ( int  n)
static

Returns the mean of the distribution with parameter \(n\).

Returns
the mean

◆ getStandardDeviation()

static double getStandardDeviation ( int  n)
static

Returns the standard deviation of the distribution with parameter \(n\).

Returns
the standard deviation

◆ getVariance()

static double getVariance ( int  n)
static

Returns the variance of the distribution with parameter \(n\).

Returns
variance

◆ inverseF()

double inverseF ( double  u)

Returns the inverse distribution function \(F^{-1}(u)\), defined in ( inverseF ).

Parameters
uvalue in the interval \((0,1)\) for which the inverse distribution function is evaluated
Returns
the inverse distribution function evaluated at u

Implements Distribution.


The documentation for this class was generated from the following file: